Rubber-way.ru

Рубер Вэй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ХИМИКО-МИНЕРАЛОГИЧЕСКИЙ СОСТАВ ПОРТЛАНДЦЕМЕНТА

ХИМИКО-МИНЕРАЛОГИЧЕСКИЙ СОСТАВ ПОРТЛАНДЦЕМЕНТА

Сырьевые материалы, используемые для производства портландце­мента, состоят в основном из окиси кальция, кремнезема, глинозема и окиси железа. В печи эти окислы химически взаимодействуют друг с другом с образованием ряда более сложных соединений, при этом достигается химическое равновесие.

Тем не менее цемент можно рассматривать как систему, находящу­юся в равновесии, вследствие «замораживания» расплава в состоянии, существовавшем при температуре клинкерообразования.

В действительности силикаты в цементе не являются чистыми фаза­ми, так как содержат небольшое количество окислов в виде твердых растворов. Эти окислы оказывают значительное влияние на расположе­ние атомов, форму кристаллов и гидравлические свойства силикатов.

Определение расчетного состава портландцемента основано на ра­боте Р. Г. Богга (R. H. Bogue) и других исследователей. Существуют также и иные методы расчета состава *.

Уравнения Богга для определения процентного содержания основ­ных клинкерных минералов приводятся ниже. В скобках химические формулы обозначают содержание данного окисла в процентах от веса цемента.

Кроме основных минералов, указанных в табл. 1.1, в цементном клинкере содержатся в небольшом количестве MgO, ТЮ2, Мп203, К20 и Na20. Они обычно составляют не более нескольких процентов от веса цемента. Особый интерес представляют окислы натрия и калия. В дальнейшем мы их называем щелочами. Установлено, что они хими­чески взаимодействуют с некоторыми заполнителями и продукты этих реакций вызывают разрушение бетона (см. главу 7). Щелочи влияют на скорость роста прочности цемента. Содержание щелочей и Мп203 можно быстро определить с помощью спектрофотометра.

Минералогический состав цемента установлен в результате изуче­ния фазового равновесия тройных систем С—А—S и С—А—F, четвер­ной системы С — C2S — C5À3 — C4AF и др. Были исследованы кривые плавления или кристаллизации и вычислены составы жидких и твердых фаз при любой температуре. Фактический состав клинкера в дополне­ние к методам химического анализа может быть исследован с помощью микроскопа путем измерения коэффициента преломления соединений в виде порошка. Содержание минералов-силикатов может быть оп­ределено с помощью микрометра Шэндс при исследовании прозрач­ных шлифов (аналогично применяемому в петрографическом ана­лизе) в проходящем свете. Полированные и травленые шлифы также могут быть исследованы как в отраженном, так и в проходящем свете. Рентгеновская дифракция порошкообразного вещества может быть использована с целью обнаружения кристаллических фаз, а также для исследования их кристаллической структуры. Находит применение так­же электронный микроскоп, который дает большое увеличение и обла­дает значительно большей разрешающей способностью, чем световой^.

СзЭ, содержание которого обычно наибольшее, встречается в виде небольших равноразмерных неокрашенных зерен.

Известно, что С2Б имеет три или даже четыре модификации. а -С28, которая существует при высоких температурах, переходит при температуре 1456° С в Р -модификацию. Р-СгЭ претерпевает дальней­шее превращение в у -С28 при 675° С, но при скорости охлаждения це­ментов, имеющей место в производственных условиях, в клинкере сох­раняется Р-С28 в виде зерен округлой формы, обычно показывающих двойникование кристаллов.

С3А образует прямоугольные кристаллы, но в застеклованном со­стоянии это аморфное промежуточное вещество.

С4АР представляет собой твердый раствор ряда соединений от С2Р до С6А2Р; принятая формула С4АР является условной, отражающей средний состав этой фазы.

Различные типы цементов в значительной степени отличаются по своему химико-минералогическому составу, который обусловливается соотношением сырьевых материалов. Одно время в США была пред­принята попытка контролировать свойства цементов различного назна­чения установлением предельных количеств четырех основных клинкер­ных минералов, определенных расчетом по химическому анализу. Этот способ исключил бы многочисленные физические испытания, но, к со­жалению, расчетный минералогический состав не является достаточно точным и не учитывает все необходимые свойства цемента и, следова­тельно, не может заменить непосредственных определений требуемых свойств.

Примерный химический состав портландцемента в % следующий: СаО—60—67; ЭЮа—17—25; А1203—3—8; Ре203—0,5—6; Л^О-0,1— 4; щелочей — 0,4—1,3; БОз—1—3.

В табл. 1.2 приводится химический и расчетный минералогический составы типичного портландцемента.

Читайте так же:
Цементный песчаный раствор м100 состав

Нерастворимый остаток определяют путем обработки цемента со­ляной кислотой; он характеризует количество примесей в цементе, по­падающих главным образом в составе гипсового камня. ВЭ 12:1958 допускает величину нерастворимого остатка не более 1,5% веса це­мента.

Важно отметить, что минералогический состав цемента может из­меняться в значительной степени даже при сравнительно небольших

9

Несомненно, что контролю химического состава цемента придается особое значение. У типичных обычных и быстротвердеющих портланд- цементов общая сумма содержания двух силикатов меняется незначи­тельно, в узких пределах,, поэтому различия в составе в большой степе­ни зависят от соотношения между СаО и БЮг в сырьевых материалах.

40.Цементы. Портландцемент, его химический и минералогический состав. Получение портландцемента.

Цементы – гидравлические вяжущие вещ-ва, твердеющие в воде и на воздухе. Различают: портландцемент, глиноземестый цемент, шлаковый.

Портландцемент. Химический и миенералогический состав:

Вяжущий материал из известняка и глины, получаемый путём обжига. Обжигают: смесь извести и глины в соотношении 3:1. После обжига образуется продукт, называемый клинкер.

Хим состав портландцемента:

SiO 20-24%

AlO 3,5-5,5%

FeO 3-5%.

Хим состак клинкера принято выражать в перещёте на разм. оксиде.

Цементный клинкер – система из нескольких искусственных материалов. Основные материалы клинкера: алит, белит, алюминаты, алюмоферриты кальция, целит.

Получение портландцемента:

Дотируя известняк и глину 3:1); размалывают смесь, подают в медленно вращающуюся целиндрическую печь (с небольшим наклоном).

Смесь постепенно перемещаются при вращении в нижний конец печи вдувается топливо, образующ при сгорании газа.

41Химизм процессов, протекающих при получении цемента и его взаимодействии с водой. Основные составляющие цементного камня. Влияние добавок на процессы твердения

Цементы – гидравлические вяжущие вещ-ва, твердеющие в воде и на воздухе. Различают: портландцемент, глиноземестый цемент, шлаковый.

Портландцемент. Химический и миенералогический состав:

Вяжущий материал из известняка и глины, получаемый путём обжига. Обжигают: смесь извести и глины в соотношении 3:1. После обжига образуется продукт, называемый клинкер.

Хим состав портландцемента:

SiO 20-24%

AlO 3,5-5,5%

FeO 3-5%.

Хим состак клинкера принято выражать в перещёте на разм. оксиде.

Цементный клинкер – система из нескольких искусственных материалов. Основные материалы клинкера: алит, белит, алюминаты, алюмоферриты кальция, целит.

Получение портландцемента:

Дотируя известняк и глину 3:1); размалывают смесь, подают в медленно вращающуюся целиндрическую печь (с небольшим наклоном).

Смесь постепенно перемещаются при вращении в нижний конец печи вдувается топливо, образующ при сгорании газа.

42. Коррозия бетона и методы борьбы с ней. Основные виды коррозии бетона. Химизм процессов, протекающих при коррозии. Основные методы защиты бетона от коррозии.

Под действием окружающей среды бетон может разрушаться – явление коррозии. Коррозия бетона начинается с цементного камня;Щебёнка разрушается в меньшей степени,

Основные виды коррозии бетона:

За счёт разложения, составления цементного камня водой, а так же в следствии растворения и вымывания составления цементного камня.

Образование лёгких растворимых солей за счёт взаимодействия, составляющего цементного камня с веществами окружающей среды и с последующим их вымыванием.

Образовывается в цементном камне за счёт взаимдействия с проницающими в него веществами, соединением с большим объёмом чем исходящие продукты, в результате цемент растрескивается за счёт внутреннего напряжения.

1 – преимущественно связан с растворение гидроксида кальция. Легче всего протекает в мягкой пресной воде, в жёсткой – в меньшей степени.

2 – вызывается СО, растворённым в воде.

3 – сульфатая коррозия: вода насыщена СаSO.

Метод борьбы с коррозией цемента:

Выбор подходящего цемента, способного сопротивляться данным видам коррозии

Применение защитных покрытий (используюся полимерные покрытия, лакокрасочные, эмалевыи и др.)

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Особенности химического состава и обменных процессов цемента. Клеточный и бесклеточный цемент. Характеристика органических и минеральных компонентов цемента.

Цемент зуба — обызвествленная ткань зуба, сходная с костной, но, в отличие от нее, лишенная сосудов и не подверженная постоянной перестройке. Цемент покрывает корни и шейку зуба. По данным большинства исследователей, он в 60-70% частично заходит на эмаль (так называемый коронковый цемент), в 10% не доходит до нее (рис. На-в).

Читайте так же:
Цементный раствор пропорции по госту

Согласно сведениям, полученным в последние годы, непосредственный контакт эмали с цементом встречается значительно чаще, чем считали ранее, а область, наблюдаемая в 10% зубов на светооптическом уровне в виде зазора между цементом и эмалью, в действительности покрыта очень тонким слоем цемента.

Толщина слоя цемента минимальна в области шейки зуба (20-50 мкм) и максимальна у верхушки корня (100-1500 мкм и более, толще в молярах).

Вследствие продолжающегося в течение всей жизни непрерывного ритмического отложения цемента на поверхности корня зуба толщина его слоя утраивается с 20 до 60-70 лет. Прочность полностью обызвествленного цемента несколько ниже, чем расположенного под ним дентина. Он является наименее минерализованной из твердых тканей зуба, но все же содержит больше неорганических веществ (около 60%, преимущественно гидроксиапатита), чем костная ткань (порядка 50%).

Функции цемента зубов:

1) входит в состав поддерживающего аппарата зуба, обеспечивая прикрепление к зубу волокон периодонтальной связки;

2) защищает дентин корня от повреждающих воздействий;

3) выполняет репаративные функции при образовании так называемых резорбционных лакун и при переломе корня зуба;

4) откладываясь в области краев новообразованных волокон регенерирующей периодонтальной связки после ее повреждения, способствует восстановлению ее прикрепления к корню зуба;

5) откладываясь в области верхушки корня, обеспечивает сохранение общей длины зуба, компенсирующее стирание эмали в результате ее изнашивания (пассивное прорезывание).

Строение цемента зубов

Цемент состоит из клеток (присутствуют не везде) и обызвествленного межклеточного вещества (матрикса), включающего коллагеновые волокна и основное вещество. Его питание осуществляется диффузно со стороны периодонтальной связки. Цемент подразделяется на бесклеточный (первичный) и клеточный (вторичный).

Бесклеточный (первичный) цемент образуется первым в ходе развития и покрывает поверхность корней зуба в виде слоя незначительной (30-230 мкм) толщины минимальной в области цементо-эмалевой границы и максимальной у верхушки зуба. Он является единственным слоем цемента, покрывающим шейку зуба, а в некоторых зубах (например, нижних передних резцах) он почти целиком покрывает и корень. Бесклеточный цемент не содержит клеток и состоит из обызвествленного межклеточного вещества, включающего плотно расположенные коллагеновые волокна и основное вещество. На его поверхности располагается слой необызвествленного органического материала прецемент (цементоид) толщиной 0,25-5,0 мкм, который содержит коллагеновые фибриллы. В нем выявляется исчерченность, направленная перпендикулярно поверхности корня (образована вплетающимися в цемент волокнами периодонтальной связки), а также слоистость, параллельная поверхности корня зуба (вследствие периодичности отложения самого цемента). Линии роста в бесклеточном цементе располагаются близко друг к другу, а его граница с дентином выражена нечетко.

Клеточный (вторичный) цемент покрывает апикальную треть корня и область бифуркации корней многокорневых зубов. Он располагается поверх бесклеточного цемента, однако иногда (в отсутствие последнего) непосредственно прилежит к дентину. Граница между ними (в отличие от таковой с бесклеточным цементом) выражена отчетливо. Толщина слоя клеточного цемента варьирует в широких пределах (100-1500 мкм) и наиболее значительна в молярах.

Клеточный (вторичный) цемент состоит из клеток (цементоцитов и цементобластов) и обызвествленного межклеточного вещества.

Цементоциты лежат в особых полостях внутри цемента лакунах и построению сходны с остеоцитами. Между их плазмолеммой и обызвествленной стенкой лакуны находится перицементоцитарное пространство, заполненное органическим материалом. Цементоциты представляют собой уплощенные клетки с умеренно развитыми органеллами и относительно крупным ядром.

Их многочисленные (до 30) ветвящиеся отростки диаметром около 1 мкм достигают в длину 12-15 мкм и связывают соседние клетки благодаря наличию многочисленных щелевых контактов (нексусами) и плотных соединений. Отростки ориентированы преимущественно в сторону периодонтальной связки (источника питания). Канальцы, связывающие лакуны и содержащие отростки цементоцитов, образуют непрерывную систему, которая протягивается от внутренней до наружной поверхностей слоя цемента.

Читайте так же:
Цементный фибролит курсовая работа

Цементобласты клетки, участвующие в образовании цемента и располагающиеся на его поверхности в периферических участках периодонтальной связки вокруг корня зуба. Описание этих клеток приведено выше.

При формировании бесклеточного цемента цементобласты отодвигаются кнаружи от выработанного ими межклеточного вещества, а при образовании клеточного цемента замуровываются в нем. В последнем случае, погружаясь в цемент, эти клетки постепенно превращаются в цементоциты, уменьшаясь в объеме и утрачивая значительную часть органелл.

Межклеточное вещество клеточного цемента включает волокна и основное вещество. Волокна цемента образованы коллагеном I типа и подразделяются на "собственные", или "внутренние", т. е. образованные клетками цемента и идущие преимущественно параллельно поверхности корня зуба, и "внешние", к которым относят волокна периодонтальной связки шарпеевские волокна (ориентированы перпендикулярно поверхности корня).

Соотношение между волокнами обоих типов варьирует в широких пределах в различных участках цемента. В цементе человека и животных, подобно костной ткани, обнаруживается ряд неколлагеновых белков (сиалопротеин и остеопонтин), протеогликаны (верзикан, декорин, бигликан и люмикан), гликозаминогликаны (в бесклеточном цементе отсутствуют).

Межклеточное вещество цемента зуба человека содержит особый белок САР, который обусловливают адгезию периодонтальных фибробластов, цементный фактор роста (англ. Cementum-Derived Growth Factor CGF), обладающий выраженной митогенной активностью. Помимо этого, цемент, как и костная ткань, содержит высокие концентрации факторов роста таких, как ИФР-1, ИФР-П, ТФР-(31 и ТРФР, которые выделяются в значительных количествах, в особенности, после повреждения и способствуют регенерации этой ткани.

84. Пульпа зуба как вариант рыхлой соединительной ткани. Химический состав и роль пульпы в обмене твердых тканей зуба.

Вариант рыхлой соединительной ткани. Клеточные элементы пульпы отличаются разнообразием. Помимо одонтоболастов здесь имеются фиброблатсы, макрофаги, плазматические клетки. Одонтобласты принимают участие в обменных процессах дентина и эмали. Они располагаются преимущественно в наружном слое пульпы, а их отростки

проникают в дентинные канальцы и идут на всем их протяжении.

Содержание воды в пульпе составляет примерно 72-74% остальное приходится на долю сухого остатка, состоящего из органических и неорганических компонентов.

Основными белками внеклеточного матрикса пульпы являются коллагеновые белки, формирующиеся в коллагеновые волокна. Эластические волокна в пульпе не найдены. Пульпа корневых каналов отличается от коронковой пульпы большим содержанием пучков коллагеновых волокон. В состав межклеточного матрикса входят протеогликаны, гликопротеиды, фосфопротеиды и нгокомолекулярные пептиды. Особенно богата гликопротеидами базальная мембрана сосудов пульпы зуба. Из углеводных компонентов преобладают здесь хондроитинсульфаты.

гетероолигосахариды, гликоген, глюкоза, уроновые кислоты.

Пульпа как любая ткань содержит липиды и различные метаболиты. Макромолекулы ткани пульпы зуба (белки и входящие в состав протеогликанов хондроитинсульфаты) обладают амфотерными свойствами. При физиологических значениях рН карбоксильные группы коллагена, гликопротеидов, протеогликанов создают отрицательный заряд межклеточного матрикса, это обуславливает не только поглощение чужеродных веществ, но и катионов Са, К, Na

Содержание белка в пульпе зуба составляет 52 3 мг/г. Гликогена 0,42 мг/г Особенность метаболизма пульпы.

1. Пульпа зуба является относительно высокой по сравнению с другими тканями интенсивностью окислительно-восстановительных процессов, а от сюда высокое потребление кислорода, т.е. интенсивное дыхание.

2. О высоком уровне обменных процессов свидетельствует наличие здесь пентозофосфатного цикла окисления глюкозы (интенсивно идут биосинтетическеие процессы). Наиболее высокий уровень этого цикла определяется в период активной продукции одонтобластами дентина, например при образовании вторичного цемента.

С помощью радиоизотопных методик 5 пульпе обнаружены активные процессы синтеза РНК, а значит и синтез соответствующих белков. Раскрыты закономерности функционирования одонтобластов в норме и при патологии.

Пульпа зуба богата ферментами с достаточно высокой активностью, что так же свидетельствует об интенсивном метаболизме данной ткани. Доказано, что углеводный обмен протекает здесь со значительной интенсивностью. В пульпе обнаружены практически все ферменты углеводного обмена (альдолаза, ЛДГ, гексокиназа, амилаза, фосфорилаза.) Обнаружены здесь дыхательные ферменты, ферменты цикла Кребса, различные формы эстераз, щелочная и кислая фосфотаза, здесь найдена глюкозо-6-фосфотаза (гликоген который здесь расщепляется может в виде глюкозы поступать в дентинную жидкость). Обнаружена АТФ-аза, аминопептидаза, трансферазы АлАт и АсАт, холиностераза и др. ферменты.

Читайте так же:
Сколько сохнет цемент без песка

Обнаруженный комплекс ферментов позволяет характеризовать пульпу как ткань с высокой метаболической

активностью, что и обуславливает высокий уровень трофики, реактивности и защитные механизмы данной ткани зуба. Об этом свидетельствует например повышение активности многих ферментов пульпы при кариесе, пульпитах и др. патологических состояниях. При среднем и глубоком кариесе в ir/льпе повышается содержание гликогена.

Шлакопортландцемент

Шлакопортландцемент

Шлакопортландцементом называется искусственно полученное гидравлическое вещество, обладающее вяжущим эффектом.

Состав шлакопортландцемента

Шлакопортландцемент получают из портландцементного клинкера, глины, шлака и известняка. Стоит отметить, что при производстве цемента крайне важная роль отводится именно химическому составу материала, а не его физической структуре, в связи с чем, исходное сырье выбирается очень тщательно. Поэтому, при производстве данного цемента может быть использован как основный, так и кислый доменный шлак. Шлаки также могут быть гранулированные и не гранулированные, однако, зачастую используются именно гранулированные шлаки. Это обусловлено двумя причинами. В основе первой причины лежит экономический аспект. А вторая причина основывается на самом процессе производства шлакопортландцемента, который существенно усложняется при использовании не гранулированном типе шлака. Однако, те шлаки, которые добавляются уже после обжига, являются гранулированными в обязательном порядке. Процентное содержания шлака в портландцементе не должно выходить за пределы 30-60%. Максимальное содержание гипса в данном цементе составляет 5%.

Технология производства шлакопортландцемента относительно несложная. Она состоит всего из двух этапов. На первом этапе осуществляется просушивание шлака, для чего используются специальные сушильные камеры. После высушивания, шлак должен иметь максимальную влажность 1%. Второй этап заключается в измельчении и смешивании всех составляющих шлакопортландцемента. Для этого используется бункер цементной мельницы, в которую загружаются шлак, гипс, клинкер, известняк. В данной мельнице происходит измельчение всех составляющих до консистенции гомогенного тонкодисперсного порошка, а также смешивание этих компонентов. Стоит отметить, что подобным образом происходит приготовление минерального порошка, используемого в производстве асфальтобетона. В зависимости от размера частиц входящих в состав веществ шлакопортландцемента, в настоящее время на рынке существуют следующие марки данного материала: м150, м200, м250, а также м300. Фракция помола порошка влияет на прочность, активность, а также на время застывания уже готовой смеси. Так, чем мельче помол, тем быстрее застывает раствор. Если сравнивать данное вещество с обычным цементом, то стоит сказать, что благодаря более тонкому помолу шлакоцемента, он обладает более выраженным эффектов. Обычно, чтобы получить очень высокие вяжущие качества данного вещества, рекомендуют использовать именно двухступенчатый или сепараторный помол. В связи с этим, шлакопортландцемент перемалывается практически до той же фракции, что и обычный портландцемент.

Порландцемент – это искусственный материал зеленовато-серого цвета, состоящий из измельченного клинкера и глины. Такое название данный материал унаследовал от природного камня, добыча которого осуществляется на острове Портленд. По мнению первооткрывателей порландцемента, материал, благодаря, в первую очередь, своему окрасу, очень похож на этот природный камень.

Таким образом, портландцемент и шлакопортландцемент являются двумя схожими по своему составу и свойствам материалами. Это обуславливает практически одинаковые сферы их применения.

Шлакопортландцемент

Отличия портландцемента и шлакопортландцемента

  1. В отличие от портландцемента, кроме глины и клинкера, шлакопортландцемент в своем составе содержит еще и шлаки. Это является первым и наиболее явной отличительной особенностей двух схожих материалов.
  2. Разный набор прочности в момент начала затвердевания материалов. Так, у шлакопортландцемента этот процесс протекает существенно медленнее, чем у портландцемента.
  3. Несмотря на предыдущий пункт, шлакопортландцемент спустя некоторое время (как правило, два-три месяца) демонстрирует существенно большую прочность, чем портландцемент.
  4. Однако, в отличие от шлакопортландцемента, портландцемент имеет преимущество в том, что он менее подвержен негативному воздействию окружающей среды, особенно если это касается температурного режима. Смесь, в которой присутствуют шлаки, при понижении температуры до отметки в 4 0 С застывает гораздо медленнее. Это, в свою очередь, приводит к необходимости применения теплвлажностной обработки для более быстрого застывания шлакопортландцемента.
  5. Портландцемент имеет больший удельный вес, чем шлакопортландцемент. Следовательно, объемный его вес также больше.
  6. Шлакопортландцемент выигрывает у портландцемента в стоимости, которая гораздо ниже. Это связано с тем, что дорогой клинкер частично заменяется гранулированным шлаком, который является более дешевым материалом. Таким образом, количество шлака в составе цемента напрямую влияет на его стоимость – тем она ниже, чем больше содержание шлака.
  7. Шлакопортландцемент хранится хуже, чем портландцемент.
Читайте так же:
Цементная стяжка полов обязательна

Учитывая отличительные особенности материалов, можно сказать, что данные два вещества являются ближайшими «родственниками» и вполне могут называться взаимозаменяемыми материалами.

Свойства шлакопортландцемента

  1. Низкая морозостойкость.
  2. Высокая устойчивость к высоким температурам.
  3. Устойчивость к воздействию как сульфатных, так и пресных вод.
  4. Во время затвердевания выделяет значительно меньшее количество тепла, в сравнении с другими подобными материалами. Данное свойство позволяет шлакопортландцементу быть использованным в качестве основного материала при строительстве массивных сооружений из бетона.
  5. Обладает значительно меньшей степенью объемной деформации.
  6. Чем дольше застывает материал, тем он становится прочнее. На начальном этапе застывания шлакопортландцемент обладает очень низким показателем нарастания прочности. Таким образом, приближенную к цементу прочность, шлакопортландцемент приобретает спустя 6-12 месяцев, в зависимости от температурно-влажностных условия застывания. Чтобы ускорить данный процесс применяется клинкер, содержащий большое количество алюмината и силиката, а также шлаки, содержание большое количество глинозема.
  7. Проявляет свои лучшие свойства при застывании во влажной среде с повышенным температурным режимом. Стоит сказать, что преждевременное высыхание шлакопортландцемента имеет крайне негативное влияние на дальнейшее проявление его свойств.

Таким образом, стоит отметить, что благодаря своим свойствам наряду с относительной дешевизной, шлакопортландцемент нашел свое активное применение во многих сферах человеческой деятельности.

Применение шлакопортландцемента

Где используется шлакопортландцемент?

  1. Данный материал является основным веществом во время производства сборного бетона и железобетона;
  2. С участием быстротвердеющего шлпкопортандцемента изготавливаются сборные конструкции и монолитные изделия.
  3. При применении тепловлажностной обработки, что ускоряет затвердевание материала при этом не ухудшая его свойств, он используется во время изготовления сборных конструкций.
  4. Железобетонные трубы, шпалы, отдельные мостовые элементы также изготавливаются с участием шлакопортландцемента.
  5. Штукатурные и кладочные растворы, становые блоки, бетонные смеси, как правило, изготавливаются при использовании двух «родственных» материалов – шакопортландцемента и портландцемента.

Таким образом, шлакопортландцемент является качественным и доступным материалом одновременно, чем и обуславливается его популярное использование во многих областях деятельности человека.

Статьи по теме

Свойства графита

Свойства графита

Слово графит в переводе с греческого обозначает «пишу». Минерал с таким названием у природе образуется при высокой температуре в вулканических горных породах.

Характеристики тантала

Характеристики тантала

Обнаружение тантала датируется 1802 годом. Впервые миру он был представлен ученым А. Г. Экебергом. Он обнаружил в Финляндии и Швеции два минерала. Именно в их составе было это вещество.

Оксидированная медь

Оксидированная медь

Обращает на себя внимание тот факт, что крыши многих старинных сооружений, изготовленные из меди, хорошо сохранились до сегодняшнего дня. Всё дело в том, что медь естественным образом подвергается окислению.

Подготовка стен под покраску

Подготовка стен под покраску

Комфортную обстановку в доме создают многие вещи, очень важно грамотно подойти к обустройству своего жилища. Во многих случаях создание обстановки начинается с обустройства стен. В основном, хозяева выбирают поклейку обоев или окрашивание.

Грунтовка по ржавчине

Грунтовка по ржавчине

Грунтовка в своем составе содержит: растворитель, связующий компонент и различные добавки для придания ей особых свойств. Цвет грунтовки обычно прозрачный или мутно белый.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector