Rubber-way.ru

Рубер Вэй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловой баланс цементной печи

Задание

Теплотехническая эффективность замены барабанного холодильника на колосниковый на Паранайском цементном заводе.

Исходные данные для расчета.

Производительность печи =10 т/ч

Размеры печи 2,90х2,44х56

Введение.

Наиболее распространёнными холодильниками клинкера являются рекуператорные (планетарные), колосниковые и барабанные (трубные). Известны и другие виды холодильников, но масштабы их применения в промышленности менее значительны.

В этой работе предлагается замена барабанного холодильника на колсниковый на Паранайском цементном заводе.

Барабанный (трубный) холодильник представляет собой метал­лический барабан диаметром 2,5—6,0 м и длиной 20—100 м, вра­щающийся на бандажах и опорных роликах с частотой 3—6 об/мин. Кожух холодильника обычно, имеет такой же диаметр, что и кожух печи. Привод барабана, так же как и привод вращаю­щейся печи, состоит из электродвигателя, редуктора, венцовой и подвенцовой шестерен. Угол наклона барабана к горизонту равен 4— 6°. Горячая часть барабана отфутерована шамотным кирпичом или чугунными плитами. На остальной части корпуса барабана в шах­матном порядке установлены лопасти (швеллеры), которые пересыпают клинкер и способствуют увеличению поверхности теплообме­на. Мелкий клинкер после выхода из печи просыпается через ре­шетку, а крупные его куски направляются в дробилку. Загрузочное устройство холодильника выполнено в виде керамической шахты с наклонным дном. Места соединения шахты с головкой печи и ба­рабаном холодильника уплотняются. В барабанном холодильнике клинкер охлаждается с 1273—1373 до 373—573 К. Охлаждающий воздух, нагреваемый до температуры 773—873 К, используется в качестве вторичного воздуха.

Барабанный холодильник у печи с циклонными теплообменни­ками производительностью 1800 т/сут имеет диаметр 4,6 м и длину 50 м, угол его наклона 4,5°, а частота вращения 2,4 об/мин. Он эф­фективно работает, если футерован огнеупорной массой на 70— 80% своей длины, а на участке между 16 и 28 м в нем устаиовлены литые лопатки и далее до конца холодильника —лопатки из сталь­ного листа. Вместо лопаток можно устанавливать ковши из жа­ростойкого литья. Для понижения температуры клинкера до 423— 473 К необходимо впрыскивание воды внутрь барабана при расходе ее около 3 м 3 /ч. Барабанный холодильник не оборудуется дро­билкой, так как крупные зерна клинкера разбиваются при пересы­пании. Преимуществами барабанных холодильников являются простота конструкции и надежность в эксплуатации, отсутствие из­быточного воздуха, относительно низкий расход электроэнергии. К. недостаткам холодильника относится недостаточно строго регу­лируемое количество вторичного воздуха, большая его запылен­ность, что ухуджает видимость в печи, необходимость установки вращающихся печей на высоких фундаментах, Недостаточно вы­сокая стойкость пересыпающих лопаток и полок. Возможный пере­грев нефутерованного корпуса холодильника до 523—673 К частич­но устраняется путем орошения его водой. Барабанные холодиль­ники распространены недостаточно широко.

Колосниковые холодильники различных конструкций работают по одному и тому же принципу — охлаждение клинкера осущест­вляется присасыванием воздуха сквозь его слой. Колосниковые хо­лодильники имеют колосниковую решетку, состоящую из отдельных колосников — палет, на которой слоем толщиной 150—300 мм рас­пределяется горячий клинкер. Холодный воздух подается под ре­шетку и проходит слой клинкера, охлаждая последний до 333— 353 К.

В промышленности применяют колосниковые холодильники не­которых марок, отличающиеся один от другого некоторыми кон­структивными особенностями.

В холодильниках «Волга» и «Фуллер» горизонтальные колос­никовые решетки изготовлены из одинакового количества чередую­щихся подвижных и неподвижных колосников Решетка заключена в металлический кожух, верхняя часть которого отфутерована шамотным огнеупором. Неподвижные колосники ре­шетки прочно закреплены в кожухе, а подвижные смонтированы на общей раме и совершают возвратно-поступательное движение с помощью кривошипно-шатунного механизма, благодаря чему осу­ществляется продвижение клинкера, лежащего на решетке слое толщиной 150—300 мм. Рамы совершают 8-16 движений в мину­ту при величине хода до 100 мм. Зазор между плитами достигает 5—8 мм, а живое сечение всей решетки—10%. Подрешеточное пространство разделено на две, три зоны и более в зависимости от габаритов холодильника. В секции камеры подается холодный воздух, наиболее горячая часть которого (из 1-й секции) используется в качестве вторичного воз­духа, а остальная часть (из двух секций отводится наружу. Для резкого охлаждения клинкера и равномерного распределения его на решетке применяют острое дутье воздуха высокого давле­ния или ступенчатую наклонную решетку. В разгрузочном конце холодильника установлены решетка или грохот, отсеивающие нор малыше зерна клинкера и направляющие крупные зерна в дро­билку. Под колосниковой решеткой установлен скребковый , транспортер для удаления мелких фракций клинкера, просыпавшихся через зазоры между колосниками.

Читайте так же:
Цемент смешать с масляной краской

Одной из наиболее изученных в настоящее время схем является совмещение колосникового холодильника с шахтно-секционным хо­лодильником . Клинкер охлаждается от 1623 до —673 К в колосниковом холодильнике, при этом весь охлаж­дающий воздух поступает в печь. Затем клинкер проходит дробилку предварительного дробления и подается во второй холодильник, представляющий собой систему шахтных секций, в которые горя­чий клинкер загружается сверху с помощью элеватора, скребко­вого конвейера и поворотных заслонок. Клинкер движется по шах­там вниз со скоростью 2,5—3 см/мин и проходит их за 2—3 ч. Выгрузка клинкера с температурой 343—353 К синхронизирована с нагрузкой. Холодный воздух низкого давления., по специальным трубопроводам, проходящим в шахтах-секциях, подается сверху вниз и нагревается до 333—373 К, после чего направляется в ко­лосниковый холодильник. Так как воздух не контактирует с клин­кером, то он не содержит пыли и понуждается в очистке.

Экономичен также двойной просос охлаж­дающего воздуха через слой клинкера в разных камерах. В этом случае температура подогрева вторичного воздуха может дости­гать 1073—1173 К.

К недостаткам колосниковых холодильников относят то что они имеют сложную конструк­цию и много движущихся частей, часто выходящих из строя. При охлаждении мелкого клинкера значительная часть его просеивается через отверстия между колосниками и перегружает скребковый транспортер, что вызывает остановку агрегата. Однако они харак­теризуются высокой удельной производительностью [800— 900 кг/(м 2 .ч)] и глубоким (до 323—353 К) охлаждением клинкера. В связи с тем что найдены способы уменьшения, степени влияний отмеченных недостатков, в последнее время стали проектироваться колосниковые холодильники как средней, так и большой (3000 -10000 т/сут) производительности.

Реферат: Расчёт теплотехнической эффективности замены барабанного холодильника на колосниковый на Паранайском цементном заводе

Теплотехническая эффективность замены барабанного холодильника на колосниковый на Паранайском цементном заводе.

Исходные данные для расчета.

Производительность печи =10 т/ч

Размеры печи 2,90х2,44х56

Наиболее распространёнными холодильниками клинкера являются рекуператорные (планетарные), колосниковые и барабанные (трубные). Известны и другие виды холодильников, но масштабы их применения в промышленности менее значительны.

В этой работе предлагается замена барабанного холодильника на колсниковый на Паранайском цементном заводе.

Барабанный (трубный) холодильник представляет собой метал­лический барабан диаметром 2,5—6,0 м и длиной 20—100 м, вра­щающийся на бандажах и опорных роликах с частотой 3—6 об/мин. Кожух холодильника обычно, имеет такой же диаметр, что и кожух печи. Привод барабана, так же как и привод вращаю­щейся печи, состоит из электродвигателя, редуктора, венцовой и подвенцовой шестерен. Угол наклона барабана к горизонту равен 4— 6°. Горячая часть барабана отфутерована шамотным кирпичом или чугунными плитами. На остальной части корпуса барабана в шах­матном порядке установлены лопасти (швеллеры), которые пересыпают клинкер и способствуют увеличению поверхности теплообме­на. Мелкий клинкер после выхода из печи просыпается через ре­шетку, а крупные его куски направляются в дробилку. Загрузочное устройство холодильника выполнено в виде керамической шахты с наклонным дном. Места соединения шахты с головкой печи и ба­рабаном холодильника уплотняются. В барабанном холодильнике клинкер охлаждается с 1273—1373 до 373—573 К. Охлаждающий воздух, нагреваемый до температуры 773—873 К, используется в качестве вторичного воздуха.

Барабанный холодильник у печи с циклонными теплообменни­ками производительностью 1800 т/сут имеет диаметр 4,6 м и длину 50 м, угол его наклона 4,5°, а частота вращения 2,4 об/мин. Он эф­фективно работает, если футерован огнеупорной массой на 70— 80% своей длины, а на участке между 16 и 28 м в нем устаиовлены литые лопатки и далее до конца холодильника —лопатки из сталь­ного листа. Вместо лопаток можно устанавливать ковши из жа­ростойкого литья. Для понижения температуры клинкера до 423— 473 К необходимо впрыскивание воды внутрь барабана при расходе ее около 3 м 3 /ч. Барабанный холодильник не оборудуется дро­билкой, так как крупные зерна клинкера разбиваются при пересы­пании. Преимуществами барабанных холодильников являются простота конструкции и надежность в эксплуатации, отсутствие из­быточного воздуха, относительно низкий расход электроэнергии. К. недостаткам холодильника относится недостаточно строго регу­лируемое количество вторичного воздуха, большая его запылен­ность, что ухуджает видимость в печи, необходимость установки вращающихся печей на высоких фундаментах, Недостаточно вы­сокая стойкость пересыпающих лопаток и полок. Возможный пере­грев нефутерованного корпуса холодильника до 523—673 К частич­но устраняется путем орошения его водой. Барабанные холодиль­ники распространены недостаточно широко.

Читайте так же:
Цементная стяжка машинным способом

Колосниковые холодильники различных конструкций работают по одному и тому же принципу — охлаждение клинкера осущест­вляется присасыванием воздуха сквозь его слой. Колосниковые хо­лодильники имеют колосниковую решетку, состоящую из отдельных колосников — палет, на которой слоем толщиной 150—300 мм рас­пределяется горячий клинкер. Холодный воздух подается под ре­шетку и проходит слой клинкера, охлаждая последний до 333— 353 К.

В промышленности применяют колосниковые холодильники не­которых марок, отличающиеся один от другого некоторыми кон­структивными особенностями.

В холодильниках «Волга» и «Фуллер» горизонтальные колос­никовые решетки изготовлены из одинакового количества чередую­щихся подвижных и неподвижных колосников Решетка заключена в металлический кожух, верхняя часть которого отфутерована шамотным огнеупором. Неподвижные колосники ре­шетки прочно закреплены в кожухе, а подвижные смонтированы на общей раме и совершают возвратно-поступательное движение с помощью кривошипно-шатунного механизма, благодаря чему осу­ществляется продвижение клинкера, лежащего на решетке слое толщиной 150—300 мм. Рамы совершают 8-16 движений в мину­ту при величине хода до 100 мм. Зазор между плитами достигает 5—8 мм, а живое сечение всей решетки—10%. Подрешеточное пространство разделено на две, три зоны и более в зависимости от габаритов холодильника. В секции камеры подается холодный воздух, наиболее горячая часть которого (из 1-й секции) используется в качестве вторичного воз­духа, а остальная часть (из двух секций отводится наружу. Для резкого охлаждения клинкера и равномерного распределения его на решетке применяют острое дутье воздуха высокого давле­ния или ступенчатую наклонную решетку. В разгрузочном конце холодильника установлены решетка или грохот, отсеивающие нор малыше зерна клинкера и направляющие крупные зерна в дро­билку. Под колосниковой решеткой установлен скребковый , транспортер для удаления мелких фракций клинкера, просыпавшихся через зазоры между колосниками.

Одной из наиболее изученных в настоящее время схем является совмещение колосникового холодильника с шахтно-секционным хо­лодильником . Клинкер охлаждается от 1623 до —673 К в колосниковом холодильнике, при этом весь охлаж­дающий воздух поступает в печь. Затем клинкер проходит дробилку предварительного дробления и подается во второй холодильник, представляющий собой систему шахтных секций, в которые горя­чий клинкер загружается сверху с помощью элеватора, скребко­вого конвейера и поворотных заслонок. Клинкер движется по шах­там вниз со скоростью 2,5—3 см/мин и проходит их за 2—3 ч. Выгрузка клинкера с температурой 343—353 К синхронизирована с нагрузкой. Холодный воздух низкого давления., по специальным трубопроводам, проходящим в шахтах-секциях, подается сверху вниз и нагревается до 333—373 К, после чего направляется в ко­лосниковый холодильник. Так как воздух не контактирует с клин­кером, то он не содержит пыли и понуждается в очистке.

Экономичен также двойной просос охлаж­дающего воздуха через слой клинкера в разных камерах. В этом случае температура подогрева вторичного воздуха может дости­гать 1073—1173 К.

К недостаткам колосниковых холодильников относят то что они имеют сложную конструк­цию и много движущихся частей, часто выходящих из строя. При охлаждении мелкого клинкера значительная часть его просеивается через отверстия между колосниками и перегружает скребковый транспортер, что вызывает остановку агрегата. Однако они харак­теризуются высокой удельной производительностью [800— 900 кг/(м 2 .ч)] и глубоким (до 323—353 К) охлаждением клинкера. В связи с тем что найдены способы уменьшения, степени влияний отмеченных недостатков, в последнее время стали проектироваться колосниковые холодильники как средней, так и большой (3000 -10000 т/сут) производительности.

Трубчатые вращающиеся печи

Для термической обработки сыпучих материалов мелкого дробления без их расплавления применяются трубчатые вращающиеся печи. В большинстве своем они представляют собой длинную трубу из устойчивых к высоким температурам материалов, внутри которых, чаще всего встречно-параллельно, движется обрабатываемый материал и горячие газы.

Читайте так же:
Цемент стандарт en 197

Труба имеет наклон, из-за чего, при вращении, частички нагреваемого материала (шихты) поднимаются на небольшую высоту, падают, сдвигаются вниз. В процессе передвижения по трубе, шихта перемешивается, из-за чего каждая частичка равномерно нагревается. Дополнительное тепло материал получает от разогретого корпуса печи.

Трубчатые печи благодаря высокому коэффициенту теплообмена между продуктами сгорания топлива и нагреваемым веществом нашли широкое применение в различных производственных процессах. С их помощью производится сушка материала с удалением химически связанной влаги. В трубчатых печах производят спекание различных веществ с целью создания новых материалов. Подобные устройства незаменимы в металлургии, для обработки глинозема (спекание и кальцинация) в процессе производства алюминия.

Печь для спекания бокситов

Рис. 1 – Печь для спекания бокситов

Классическим примером трубчатой вращающейся печи является печь, предназначенная для спекания бокситов – материала, содержащего алюминий. Печь состоит из нескольких основных узлов:

— барабан;
— механизм, обеспечивающий вращение;
— опоры роликового типа;
— топливная головка;
— загрузочная камера.

Основной составляющей печи является вращающийся барабан. Его диаметр может варьироваться в пределах от 2 до 3,8 м, длина может достигать 150 м. Барабан футеруется кирпичом. Для футеровки применяется высокоглиноземный или шамотный кирпич.

Нагреваемый материал, шихта, в сухом или насыщенном влагой (40-42%) виде помещается в верхнюю (холодную) камеру. В результате вращения печи шихта медленно движется к нижнему (горячему) концу. В то же время снизу поднимаются продукты горения топлива, высушивая и спекая материал. Продукт спекания, так называемый «спек» достигая нижнего конца трубы, высыпается в охладитель, расположенный под вращающейся печью.

Охладитель (холодильник) конструктивно выполнен в виде барабана длиной до 30 м, с внутренним диаметром до 2,5 м. Внутри охладителя спек охлаждается набегающим потоком воздуха или потоками воды, которой поливают барабан. В случае воздушного охлаждения, нагретый воздух направляется в печь, оптимизируя процесс сжигания топлива, что позволяет значительно увеличить КПД печи.

Топливом для печей может служить природный газ, мазут, угольная пыль. Камера с горелками или форсунками располагается у нижнего конца печи. Отработанные газы проходят несколько степеней очистки, прежде чем быть выброшенными в дымовые трубы. Они направляются в камеры, улавливающие пыль, минуя несколько электрофильтров.

Подготовленная и загруженная печь имеет очень большую массу. К примеру, полная масса печи с барабаном, длиной 70 м может достигать 400 т. Для того чтобы поддерживать трубу и обеспечивать ей возможность вращения используют специальные бандажи, опоясывающие кожух печи. Функцию опоры выполняют ролики, установленные на подшипниках качения.

Вращение барабана осуществляется с помощью мотора. Усилие передается через редуктор на венцовую шестерню, закрепленную на корпусе барабана. Частота вращения может регулироваться и, как правило, составляет от 0,6 до 2 оборотов в минуту.

Монтируется печь под углом к горизонтали. Угол составляет от 3 до 6 %. Для того чтобы не допустить смещения конструкции под воздействием собственного веса применяют упорные ролики. Их размещают горизонтально, бандажи упираются в них сбоку.

Нижний (2) горячий конец барабана присоединяется к топливной головке. Там же расположен канал по которому спек ссыпается в холодильник. Для удобства эксплуатации, топливная головка откатная. Барабан от топливной камеры отделяют лабиринтным уплотнением. Оно представляет собой вращающийся в коробке диск с отверстиями для форсунок.

Холодный (верхний) конец барабана подсоединен к загрузочной камере. Для загрузки сухой шихты используют жесткий патрубок. Жидкую пульпу сливают или распыляют с помощью форсунок. Чтобы избежать слеживания шихты, загрузочная камера оборудована специальным отбойником. Он представляет собой болванку (груз) из стали, висящую на гибком подвесе (цепи). Во время вращения барабана груз раскачивается, разбивая слежавшийся материал.

Тепловой баланс печи

Рис. 2 – Тепловой баланс печи

Рассматривая график температурных показателей барабана можно выделить четыре участка со схожими характеристиками. Выделяют основные участки:

— зона сушки;
— зона кальцинации;
— зона спекания;
— зона охлаждения.

Самая высокая температура поддерживается в зоне спекания. Она может подниматься до 1600 °С. Температура отработанных газов на верхнем конце барабана печи снижается до 400-500 °С. Поддержание такого температурного режима гарантирует хорошее спекание и эффективную работу очищающих фильтров.

Читайте так же:
Что такое балаклея цемент

Расчетное количество тепла на килограмм спека должно находиться в пределах 6300 – 7100 кДж. Производительность, в случае использовании мокрой бокситовой шихты, будет составлять 12 и более тонн спека в час.

Тепловой баланс цементной печи

Самой значительной статьей в себестоимости цемента являются затраты на топливо при обжиге клинкера. Эти затраты резко возрастают в условиях нестабильного режима работы вращающихся печей. Кроме того, нестабильность режима ведет к снижению активности клинкера и выпуску бракованной продукции. Таким образом, для интенсификации процесса обжига, снижения себестоимости и повышения качества цемента необходимо обеспечить наиболее стабильную работу печи в заданном режиме, определенном для данных технологических условий обжига с учетом опыта эксплуатации печей и результатов промышленных испытаний.

Вращающиеся печи мокрого способа производства являются сложными объектами с большим количеством взаимосвязанных параметров, характеризующих сложные тепломассообменные, физико-химические и химические процессы обжига цементного клинкера [1]. Кроме этого, сложность в управлении таким агрегатом состоит в том, что все эти процессы протекают в одном аппарате и нет возможности обособлено влиять на протекание отдельного процесса. Так, добавление топлива на горение приводит к увеличению тепла поступающего во все зоны печи, и может быть причиной возникновения «слоения» материала вследствие зависимости скорости его движения от температуры [2].

Все эти условия делают детерминированные модели для такого объекта не эффективными [4, 6], поэтому алгоритм управления был разработан на основе теории нечетких множеств [3, 7, 10]. Кроме этого, данная теория позволяет включать в состав контролируемых параметров параметры, значения которых не могут быть определены численно или с точностью, достаточной для детерминированных расчетов.

Алгоритм работы (рис. 1) системы (рис. 2) построен на следующих положениях.

1. Степень и характер возмущения определяются по тепловому состоянию печи, то есть необходимое стабилизирующее воздействие не зависит от первопричины возмущения (если ситуация не является аварийной).

pic_31.wmf

Рис. 1. Алгоритм принятия решения

2. Печь разбивается на несколько технологических частей (зон), и управляющие воздействия определяются по вектору состояний этих частей. Исходя из этого принципа, поддержание необходимого режима обжига заключается в перераспределении тепла между технологическими частями печи.

3. Количество теплоты, подаваемой в технологическую зону печи, складывается из теплоты, необходимой для возмещения потери теплоты в зоне и теплоты для компенсации текущего изменения параметра. Это положение позволяет в информационной системе произвести объединение нечеткой модели и детерминированных зависимостей [5].

4. Выделен допустимый интервал изменения объемной удельной тепловой мощности печи, при которой следует поддерживать постоянную производительность печи. Вне этого интервала поддерживается постоянный тепловой режим с изменением производительности.

pic_32.tif

Рис. 2. Советующая система по управлению цементной вращающейся печью

Состояние технологических частей печи представляется в системе как лингвистические переменные и оценивается в словесном виде. Количество технологических частей печи устанавливается оператором. Это количество определяется количеством измерительной аппаратуры и может быть от 2 до 4. В системе предусмотрены следующие технологические части: холодная часть печи; зона декарбонизации; горячая часть печи; холодильник.

Каждая из частей печи характеризуется минимальным набором контролируемых параметров, если система определяет что наличие параметров недостаточное, то выделение этой технологической части в виде лингвистической переменной блокируется. Пользователь может убирать или добавлять имеющиеся контролируемые параметры. Когда количество параметров становится недостаточным для оценки состояния технологической части печи, она автоматически объединяется с соседней.

Множество состояний технологических частей печи определяет температурную карту печного агрегата и определяет необходимые управляющие воздействия для более рационального перераспределения тепла.

В системе оценка состояния технологических частей печи показана как словесно, так и цветовой схемой, что позволяет оператору более наглядно оценивать текущую технологическую ситуацию. С помощью лингвистических переменных, характеризующих тепловое состояние частей печи определяются необходимые значения управляющих параметров для вывода печного агрегата в наилучшее технологическое состояние и обеспечивающие стабильную работу с наилучшими показателями.

Читайте так же:
Пропорции при приготовлении цементного раствора

Функция принадлежности выходного параметра m′В(y) j-го правила для N входных параметров определяется как:

где Rkj(x, y) – матрица отношения j-го правила k-го параметра; ° – операция минимаксной композиции.

Алгоритм на основе нечеткой логики дополняется детерминированными зависимостями, которые учитывают изменение химических и физических свойств шлама. Применение этих зависимостей позволяет корректировать результат и работать не только на основании текущего технологического состояния, но и предсказывать его дальнейшее изменение. Кроме этого, в системе используются алгоритмы, ограничивающие и контролирующие работу нечеткого алгоритма. Управляющие параметры ограничиваются следующим образом:

а) расход топлива – по тепловой мощности печи;

б) разрежение в пыльной камере – по коэффициенту избытка воздуха;

в) положение горелки, дросселя и завихрителя – по положению зоны горения факела.

Рассчитанные системой необходимые значения управляющих параметров могут быть использованы в качестве заданий для ПИД регуляторов нижнего уровня, осуществляющих управление исполнительными механизмами шиберов и задвижек.

В системе имеется возможность для добавления новых технологических параметров, редактирования свойств и определения новых правил. Множество значений параметра задается как отклонения от наилучшего значения, которое определяется технологом.

Система позволяет выполнять действия:

1. По введенным значениям контролируемых на печи параметров проводится анализ технологического состояния печного агрегата.

2. Исходя из анализа состояния печи, предлагаются действия по нормализации режима обжига, в том числе перевод печи на «тихий ход».

3. Имеется возможность предварительной оценки величины расхода топлива на основе теплового баланса печного агрегата и сравнение с реальным расходом топлива.

Система позволяет связываться со SCADA-системой с помощью OPC-сервера. Таким образом, в систему поступают оперативные показания датчиков через теги SCADA-системы и в то же время обеспечивается надежность работы информационной системы в целом (система может выполняться на другом компьютере и быть аппаратно независимой).

В дальнейшем планируется использовать результаты работы алгоритма системы не только для получения рекомендаций, но и для непосредственного управление цементной вращающейся печью мокрого способа производства в реальном режиме времени.

Основные преимущества предложенной системы следующие:

1. Предложена советующая система для машинистов вращающихся печей мокрого способа производства. Она является инструментом технолога цеха «Обжиг» и облегчает разработку и осуществление единообразной схемы управления режимом обжига цементного клинкера.

2. По сравнению с субъективным управлением машиниста разработанная система имеет ряд преимуществ: она охватывает весь спектр имеющейся информации; при определении управляющего воздействия производятся теплотехнические расчеты, дополняющие показания контролируемых параметров; производится постоянный контроль технологического состояния печного агрегата.

3. Применение теории нечетких множеств позволило создать более эффективный алгоритм по сравнению с детерминированными и статистическими моделями [8, 9], а также включить в набор контролируемых параметры, которые могут быть выражены только в словесном виде или точное определение затруднительно для данных условий.

4. Применение системы позволит облегчить работу оператору печи, предупредить сложные технологические ситуации, заблаговременно оповестить машиниста об опасной ситуации (это позволит принять своевременные меры, обеспечит экономию энергоресурсов и предотвратит выпуск бракованной продукции).

5. Представленная информационная система предоставляет возможность технологу разрабатывать необходимую схему поддержания наилучшего режима обжига, менять ее в зависимости от изменения технологических факторов и реализовывать непосредственно на объекте.

6. Наборы контролируемых параметров в системе жестко не заданы, что делает возможным менять параметры из анализируемого набора в зависимости от наличия измеряемых датчиков.

Предложен алгоритм управления теплотехнологическим агрегатом, в котором оценивается его тепловое состоянию печи и управление заключается в перераспределении теплоты между технологическими частями агрегата. Алгоритм реализован в виде советующей системы по управлению цементной вращающейся печью мокрого способа производства, которая в отличие от существующих включает управление на основе синтеза нечеткого вывода и детерминированных зависимостей.

Рецензенты:

Беседин П.В., д.т.н., профессор кафедры технологии стекла и керамики, ФГБОУ ВПО «Белгородский государственный технологический университет им. В.Г. Шухова», г. Белгород;

Носов О.А., д.т.н., профессор, проректор по научной работе, НОУ ВПО «Белгородский инженерно-экономический институт», г. Белгород.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector