Rubber-way.ru

Рубер Вэй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как правильно приготовить цементный раствор

Как правильно приготовить цементный раствор

Классический дом возводится из кирпича, а поэтому нужен раствор, чтобы кирпичи между собой были бы чем-нибудь скреплены. Есть несколько типов растворов, приготовленных на цементе для возведения домов. Используются для строительства: цементно-известковые, цементно-глинянные или просто цементные растворы. Состав нужно подбирать точно, в зависимости от условий строительства, вида конструкции и ее условий в которых она будет эксплуатироваться. Цементные растворы бывают тощими, нормальными и жирными. В чем разница? Рекомендуем приобрести мешки полипропиленовые оптом.

Тощий раствор содержит мало заполнителя, им неудобно работать и он не очень прочный. В простом растворе наподобие известкового или цементного всегда присутствует минеральное вяжущее или просто вяжущий компонент (известь или цемент). В сложных или жирных растворах применяется несколько компонентов, например смесь вяжущих: цемент с глиной и известью, цемент с известью и так далее. При использовании нескольких вяжущих компонентов изменяются свойства и структура раствора. Если, например, добавить глины, то у раствора улучшится зерновой состав, у него повысится водоудерживающая способность. Цементный раствор, в котором добавлена глина, отличается своей прочностью, более плотный, не зря же его называют жирным раствором.

Чтобы сделать цементный раствор нужны будут три компонента: песок, цемент и вода. Процентное соотношение компонентов изменяется в зависимости от целей, для которых приготавливается цементный раствор. Классический состав – 3:1. Три объема песка, к одному объему цемента. Такой цементный раствор применяется для штукатурных работ и кирпичной кладки.

Технология приготовления следующая. В емкость засыпаем три объема песка, к нему мы добавляем один объем цемента. Надо заметить, что для приготовления цементного раствора совсем не годится речной песок. Нужно лучше накопать в грунте или купить готовый песок. Цемент должен быть без комочков, сухим и свежим. Если в нем есть комочки, то скорее всего они образовались от большой влажности при неправильном хранении мешка с цементом. Самый качественный раствор получается из марки М500, если марка цемента ниже, то надо снизить объемную часть песка.

После приготовления цементный раствор можно использовать для работы в течение 1-1,5 часа. При размешивании раствора водой, нужно ее точно дозировать, если будет избыток воды, то раствор получится жидким, и им будет неудобно работать, после высыхания такого раствора он может стать еще и непрочным.

Цемент обладает основными характеристиками: морозостойкость, коррозионная стойкость, сульфатостойкость, водостойкость. Морозостойкость – способность цемента подвергаться неоднократному замораживанию и размораживанию при этом не терять своих прочностных качеств. Такой характеристики можно добиться, если добавить к цементу модифицирующие добавки. Если нужно построить морозостойкую конструкцию, то как правило, выбирают гидрофобный цемент М500.

Коррозионная стойкость – способность цемента противостоять к агрессивным воздействиям окружающей среды. Сульфатостойкость цемента – это способность выдерживать воздействие соленой воды. Применят такой цемент на гидросооружениях. Есть два вида сульфатостойкого цемента – сульфатостойкий цемент 300 и сульфатостойкий цемент 400. Водостойкость важна для водопроницаемого расширяющегося цемента. Такой цементный раствор обладает способностью затвердевать при увеличении объема. Затвердевание происходит очень быстро, такой цемент применяют для заделки стыков и швов в железобетонных конструкциях, которые находятся под водой.

История цемента

Цементами называют искусственные, порошкообразные вяжущие материалы, которые при взаимодействии с водой, с водными растворами солей или другими жидкостями образовывают пластичную массу, которая со временем затвердевает и превращается в прочное камневидное тело — цементный камень.

Первым природным вяжущим была глина. Глина и жирная земля после смешивания с водой и высыхания приобретали некоторую прочность. Однако в виду низких потребительских качеств данных материалов (с использованием глины возводились постройки, не требующие значительной прочности) — люди занимались поиском более совершенных вяжущих.

Первый ранний предшественник бетона был обнаружен на берегу Дуная на территории современной Югославии — в хижине древнего поселения каменного века находился пол из бетона толщиной до 25 см. Бетон для этого пола приготавливался на гравии и красноватой местной извести. Ориентировочный возраст находки — более 5000 лет до н.э. Но это скорее относится к исключению из правил, массовое применение извести при строительстве датируется гораздо более поздними сроками.

В плане массового использования при строительстве, более чем за 3 тыс. лет до н.э., в Египте, Индии и Китае начали изготавливать искусственные вяжущие — такие как гипс. Это обуславливалось тем, что при обжиге строительного гипса использовалось гораздо меньше топлива (температура обжига 140-190 С), чем для производства извести.

Известь является древнейшим искусственным минеральным вяжущим веществом после гипса , есть сведения, что египтяне использовали смешанные известково-гипсовые растворы при строительстве пирамид. Однако гипс долгое время не терял своих позиций — в следствии меньшей энергоёмкости при производстве, в том же Египте топливо было чрезвычайно дефицитным.

Впервые широко известь стала применяться в Греции для облицовочных работ и в гидротехнических сооружениях. Но лишь в римский период началось массовое применение извести для кладочных растворов.

Римляне развили строительное искусство, оставив после себя знаменитые памятники древнего мира. Римляне так же составили первые рекомендации по изготовлению и применению известковых растворов. Впервые применив вулканический пепел в качестве добавок — был изобретён предок так называемого «пуцоланнового цемента», названного по месту залежей сырья близ города Поццуолли.

В Киевской Руси основным связующим материалом была известь. Получали ее путем обжига известняка в специальных печах, которая позже гасилась в специальных ямах. Для приготовления строительного раствора использовалась известь разного состава — из чистого известняка получалась жирная белая известь (воздушная), а из известняка с глинистыми примесями — серая (гидравлическая, которая обладает способностью схватываться во влажной среде и использовалась при кладке). Белую известь использовали в основном при штукатурной работе. Хотя согласно некоторым исследованиям этим правилом не всегда руководствовались — вопрос рационального применения различных видов вяжущих также актуален и в современном строительстве. Заполнителем растворов являлась цемянка, т.е. мелко толченая керамика, а также туф и пемза. Использовалась как специально обожженная и затем размолотая глина, так и недообожённый кирпич, а позже мелкотолченый кирпичный бой более крупных фракций — что давало меньшую усадку при твердении и увеличивало трещиностойкость. Однако тонко молотая глина придавала дополнительные гидравлические свойства цемянке. Но видно уже тогда вопрос экономии и удешевления материалов и использования отходов производства ( брак кирпича ) не всегда решался в соответствии с задачей сохранения качества продукции.

Читайте так же:
Приготовление раствора цемент вода песок

Использование толчённой керамики в качестве заполнителя — прием, широко применявшийся многими древними народами. К примеру, в Индии применялась известь в смеси с сурки — молотым кирпичом. Интересно, что в раннем зодчестве в строительных растворах в качестве заполнителя песок практически не использовался. В качестве вяжущего также использовался гипс, а заполнитель — дробленый алебастр.

В 1584 г. в Москве был учрежден «Каменный приказ», который наряду с заготовкой строительного камня и выпуском кирпича ведал также изготовлением извести. В частности в Москве появились первые производители — сухих строительных смесей — назывались они цементом (или «сементом»). Активно использовались добавки — бычья кровь, творог, яичный белок, кизяк и другие вещества, что свидетельствует о высоких требованиях к качеству возводившихся сооружений.

В 1829 г. профессор Фукс (Johann-Nepomuk Fuchs, 1774.1856) — немецкий химик и минералог показал, что всякий кремнеземистый минерал может быть годен для гидравлического цемента, если его подвергнуть обжигу. Такие породы, как граниты, гнейсы, порфиры, полевой шпат, слюда и даже простая глина, не говоря о чистом кремнеземе (горный хрусталь, халцедон), все после обжига затвердевают под водой с известью. Вопрос стоял только в доступности сырья и энергоёмкости производства.

Еще ранее Фукса были проведены исследования французским инженером Вика , работы которого начались в 1812 г. (Луи Жозеф Вика еще в 1812 г. показал, что обожженная смесь чистой углекислой извести и глины в известной пропорции по измельчении затвердевает с водой без всяких прибавок.), а в 1818 г. он высказал мнение и доказал опытом, что всякий известковистый минерал, содержащий глину в известном количестве, способен дать так называемую гидравлическую (т. е. твердеющую под водой) известь после надлежащего прокаливания. С 1837 по 1841 гг. Вика показал, что большая часть глин владеет свойством превращаться в пуццоланы вследствие обжига, т. е. затвердевать с известью под водой, почему продукт обжига глин и назвали искусственной пуццоланой (цемянкой). Вика предпринял затем исследование разных французских глин, мергелей, известняков, благодаря которому, во Франции быстро стало развиваться производство гидравлических известей и цементов, получаемых прокаливанием естественных глинистых известняков.

Незадолго до Вика, Джеймс Паркер открыл, что глинистые почвы устьев Темзы с 30-35% глины после обжигания и измельчения дают цемент, на производство которого он и взял патент, назвав свой цемент — романским. Несколько лет спустя такое же открытие было сделано французами в Булони. Во Франции они тоже получили название романских цементов, или быстротвердеющих (быстросхватывающих), но впоследствии из естественных глинистых известняков стали делать и медленно схватывающие цементы, почему за всеми цементами этого рода оставлено только название «романских», без других характеристик. Большие неудобства, зависящие от неоднородности глинистых известняков, повели к дальнейшим весьма важным открытиям в приготовлении цементов. Известняки с малым содержанием глины дают гидравлическую известь, с большим содержанием — гидравлические цементы разных характеристик, а естественные толщи мергелей даже незначительной мощности обыкновенно очень неоднородны по составу. Поэтому возникло естественное желание приготовить гидравлический цемент из смеси глины и извести. Вика показал, что это возможно, но практическое осуществление эта мысль получила в России и Англии. Интересно, что до настоящего времени для определения сроков схватывания цементного теста применяется прибор, который по имени его изобретателя называется иглой Вика.

В 1822 г. в Петербурге вышла книга Е.Г. Челиева «Трактат об искусстве приготовлять хорошие строительные растворы», а в 1825 году Челиев в книге «Полное наставление, как приготовлять дешевый и лучший мертель или цемент, весьма прочный для подводных строений» обобщил опыт улучшения свойств вяжущих материалов, накопленный при восстановлении Кремля, разрушенного во время Отечественной войны 1812 года. Егор Герасимович Челиев начинал работать в Саратове, затем стал участником восстановления Москвы после пожара в 1812 году. Именно тогда он начал проводить эксперименты с различными материалами, чтобы найти скрепляющий состав для кирпича и камня. Стремление получить ещё более совершенный вид гидравлического вяжущего привело русского строителя Челиева к важному открытию: при обжиге в горне на сухих дровах смеси извести и глины до «белого жару» (при температуре свыше 1100-1200 С) получался спекшийся продукт, обладавший в измельченном виде высокими механическими свойствами и способностью твердеть в воде. Егор Герасимович Челиев является изобретателем современного цемента.

В 1824 году Джозеф Aспдин, британский каменщик, получил патент на «Усовершенствованный способ производства искусственного камня», который он создал на собственной кухне. Изобретатель нагрел смесь хорошо подробленного известняка и глины в кухонной печи, после раздробил комок смеси в порошок и получил гидравлический цемент, который затвердел при добавлении воды. Aспдин назвал полученный продукт — портландцементом, потому что при производстве он использовал камни с карьера, который находился на острове Портланд. Однако только 30 лет спустя после этого открытия английские портландцементы получили распространение, а затем и преобладание. Толчок дала Лондонская всемирная выставка 1851 г., после которой на континенте весь портландцемент назывался английским.

Полученное Аспдином вяжущее не было портландцементом в современном смысле этого слова, а представляло собой разновидность романцемента, полученного при несколько повышенной температуре обжига (900-1000 С) , однако название «портландцемент» сохранилось и поныне. Гидравлическое вяжущее, описанное Е.Г. Челиевым, ближе по свойствам к современному портландцементу, а по качеству превосходило портландцемент Аспдина.

Дело Челиева продолжили русские ученые Р. Л. Шуляченко, А. А. Байков, В. А. Кинд, С. И. Дружинин, В. Н. Юнг, П. П. Будников, В. Ф. Журавлев и др.
Д.И. Менделеев в книге «Основы химии» рассматривает ряд вопросов, связанных с химией силикатов, в частности цементов.

После Октябрьской революции развитию цементной науки уделялось большое внимание — так как цементная промышленность является базовой в обеспечение экономической мощи страны. Была создана научная основа цементной промышленности — по всей стране были созданы организации, занимающиеся проблемами и перспективами развития производства цемента.

Последние 15 лет недостаточного внимания к цементной науке привело к тому, что утеряно как минимум 75 % научного потенциала отрасли. Оставшиеся 25 % нуждаются в инвестициях со стороны производителей и поддержке со стороны государства.

Читайте так же:
Цемент для фиксации коронок адгезор

Состав цемента

Под цементом понимают вяжущее вещество, получаемое в результате измельчения клинкера, а также гипса и добавок. Клинкер в результате спекания сырьевой массы, в составе которой присутствует известняк и глина. Также в клинкере может содержаться нефелиновый шлам, мергель, доменный шлак. Клинкер является основным компонентом, входящим в состав цемента и отражающимся на его качественных характеристиках.

Введение минеральных добавок в размере до 20% от массы позволяет заметно изменить свойства исходного материала. Если содержание добавок превышает 20%, на выходе получается пуццолановый цемент.

Состав цементаСостав цемента

Производство цемента

Производственный цикл состоит их нескольких этапов:

  • Первый этап предусматривает нагрев смеси глины и гашенной извести (могут присутствовать другие компоненты в зависимости от типа цемента) до температуры +1450°С, в результате которого образуются гранулы клинкера.
  • Второй этап — спешивание гранул с гипсом (гипс добавляется с целью регуляции времени схватывания, может быть заменен на сульфат кальция) и перемалывание. Далее производится введение добавок (при необходимости), которые окажут влияние на свойства цемента. Усредненные параметры клинкера предусматривают содержание 67% — СаО, 5% — Al2О3, 22% — SiO2, 3% — Fe2O3 и других компонентов в размере 3%.

Химический состав цементаХимический состав цемента

Какой состав у цемента

  • Алит (Са3SiO5) – трехкальциевый силикат, обеспечивающий быструю реакцию с водой. Данный компонент играет значительную роль в наборе прочности цемента. Его содержание в клинкере — 50-70%.
  • Белит (Ca2SiO4) – двухкальциевый силикат. При смешивании с водой на первых порах он медленно вступает в реакцию, при этом его влияние на прочность бетона незначительна. На более поздних сроках белит существенно повышает прочность конструкции. Содержание белита в клинкере – 15-30%.
  • Алюминатная фаза (Са3Al2O6) – трехкальциевый алюминат. Смешиваясь с водой, компонент способен спровоцировать быстрое схватывание. Поэтому в состав цемента добавляется гипс или аналогичные компоненты позволяющие контролировать процесс схватывания. Содержание алюминатной фазы в клинкере – 5-10%.
  • Ферритная фаза (Са3Al2O6) четырехкальциевый алюмоферрит. Скорость реакции с водой промежуточная между показателями белита и алита. На долю ферритной фазы в составе клинкера выпадает 5-15%.
  • Другие элементы (например, оксид кальция или щелочные сульфаты) не более 3%.

Цементная группаЦементная группа

Основные характеристики цемента

Согласно ГОСТ 10178-76, данный материал может производиться с добавками и без них. Их содержание может влиять на такие свойства цемента как:

  • Прочность – способность материала воспринимать определенный объем нагрузок без разрушений. Между прочностью и способностью цемента затвердевать при смешивании с водой существуют прямая связь. Маркируется прочность буквой «М» и цифровым значением 300, 400, 500, 550, 600, реже 700 и 800. Определяется данный показатель путем вычисления предела прочности образца на изгиб и характеризует нагрузку в кг на 1 см 2 .
  • Сроки схватывания. На сроки схватывания и затвердевания цемента непосредственное влияние оказывает тонкость помола клинкера. Чем он тоньше, чем прочнее материал. Сроки схватывания испытательных образцов определяются при испытании густоты цементного теста. Кроме помола, на их продолжительность влияет водопотребность и минералогический состав.

Сроки схватывания для состава нормальной густоты составляют минимум — 45 минут, максимум — 10 часов. С повышением температуры они сокращаются, с понижением – наоборот увеличиваются.

  • Водопотребность – количество воды, которое требуется для гидратации состава и придания определенной пластичности цементному тесту. Как правило, в процессе гидратации используется 15-17% воды от массы цемента. Если требуется обеспечить подвижность раствора, воды берется в 2 раза больше.

Из чего состоит цементИз чего состоит цемент

  • Насыпная плотность. В уплотненном состоянии данный показатель равняется 1400-1700 кг/см 3 , в рыхлом – 900-110 кг/см 3 . При этом истинная плотность цемента – 3000-3100 кг/см 3 .
  • Коррозийная стойкость. Данная характеристика зависит от минерального состава и плотности материала. С повышением тонкости помола клинкера и увеличением пористости бетона происходит снижение коррозийной стойкости.
  • Тепловыведение. В процессе затвердевания цемент выделает тепло. Если данный процесс проходит медленно, то риск возникновения трещин на поверхности конструкции минимален.

Если отмечается ускоренное тепловыведение, использовать данный материал в создании массивных сооружений не рекомендуется. Регулировать такой показатель как тепловыведение цемента можно путем введения в его состав инертных и активных добавок.

  • Морозостойкость – способность выдерживать определенное количество циклов оттаивания и замораживания в пресной или соленой воде.

Рецептура цемента М500

Несмотря на впечатляющий выбор строительных материалов и смесей, цемент М500 по-прежнему не утрачивает своей высокой популярности. Как и десятки лет тому назад, он применяется практически повсеместно в заливке фундамента и производстве бетона.

Столь высокий спрос на материал объясняется его экологичностью (производится на основе глинистых пород), высокой стойкостью к агрессивным средам и коррозии (используют в устройстве плотин и прочих гидротехнических сооружений). На его основе производят бетон, железобетон, пескобетон, асбестоцемент, строительные смеси и растворы.

что входит в состав цементачто входит в состав цемента

Цементная группа включает:

  • БТЦ – быстротвердеющий,
  • БПЦ – белый,
  • СПЦ – сульфатостойкий,
  • ЦПЦ – цветной,
  • ГПЦ – гидрофобный цемент.

Пластифицированный ПЦ получают путем введения в сухой состав 0,25% сульфатно-спиртовой барды. При добавлении данного компонента увеличиваются показатели морозостойкости, смесь обретает повышенную подвижность. Серый цвет смеси придают содержащиеся в ней соединения железа. Как и любой другой строительный материал, он отличается по количеству введенных добавок.

Цемент М500 — М (марка прочности), 500 – нагрузка (кг) на 1 см 2 . Процентное содержание добавок можно определить по цифре возле буквы Д в маркировке цемента.

Химический состав цемента М500 (ПЦ 500 Д0) (%)

  • 21,55 — оксид кремния
  • 65,91 — оксид кальция
  • 5,55 — оксид алюминия
  • 4,7 — оксид железа
  • 1,9 — ангидрид серной кислоты
  • 1,46 — оксид магния
  • 0,35 — оксид калия
  • 0,49 — потери при прокаливании.

Состав цемента М500Состав цемента М500

Показатели качества цемента М500:

  • активность при пропаривании – 35,3;
  • сроки схватывания, 155 минут – начало и 250 минут – конец;
  • прочность при сжатии, на третьи сутки– 34,1 Мпа и 51,3 Мпа — на 28 сутки;
  • тонкость помола — 92,3%.

Химический состав клинкера:

  • оксид магния, % — 1,26
  • содержание SO3, % — 0,1
  • хлор-ион % – 0,0001
  • нерастворимый остаток, % — 0,41

Минералогический состав клинкера (%):

  • С2S(2CaO*SiO2) двухкальциевый силикат – 16,7
  • С3S(3CaO*SiO2) трех кальциевый силикат – 59,8
  • С4AF(4CaO*Al2O3*Fe2O3) четырех кальциевый алюмоферрит – 14,3
  • С3A(3CaO*Al2O3) трех кальциевый алюминат – 6,7
Читайте так же:
Раствор цемента с клеем пва

Цемент М500Цемент М500

Основные разновидности материала:

  • М500 Д0 – порошковый состав без примесей и добавок, способен придать бетону высокую прочность, морозо- и водостойкость. Используется в промышленном строительстве, эффективен при восстановительных, аварийных и ремонтных работах благодаря высокой начальной прочности;
  • М500 Д20. В составе смеси содержится 20% добавок. Характеризуется высокими показателями водо- и морозостойкости, практически не подвержен действию коррозии. Используется в разных отраслях строительства, в производстве фундаментов, железобетона, балок и пр. Данный стройматериал широко применяется в изготовлении кладочных, штукатурных, строительных и бетонных растворов, в проведении ремонтно-строительных работ.

Основные характеристики цемента М500:

  • Длительный эксплуатационный период.
  • Быстродействие (схватывание происходит через несколько часов после затворения).
  • Отличная адаптация к окружающим средам.
  • Удобство приготовления и использования состава.
  • Высокое качество готовых сооружений, низкий износ и деформация.

Использование цемента М500 позволяет существенно сократить строительный цикл и обеспечить конструкциям высокую прочность.

Способность цемента затвердевать при за

Гидравлический цемент

Гидравлический цемент — это современное изобретение, которое химически реагирует с водой. Благодаря своим уникальным свойствам, он широко используется для всех видов строительства. В этой статье, мы расскажем, что такое гидравлический цемент, его свойства и чем он отличается от не гидравлических вариантов.

Быстрый совет

Очень важно, чтобы вы полностью подготовили помещение и все свои инструменты перед тем, как смешаете воду и этот цемент. Потому, что гидравлический цемент начинает затвердевать менее чем за две минуты.

Гидравлический цемент представляет собой строительный продукт, который в основном используется для закрытия трещин и протечек в бетонных конструкциях, особенно тех, что с возрастом ослабевают, или структуры, которые могут быть затронуты водой. Особенностью этого цемента является то, что устанавливает и затвердевает он очень быстро после того, как вступает в контакт с водой. Большинство строительных проектов в современном мире используют гидравлический цемент, потому что он прочный, застывает очень быстро, довольно дешевый, легкий для использования, будет оставаться прочным, даже когда помещен в воде, помимо многих других преимуществ.

Гидравлический и негидравлический цемент

  • Гидравлический цемент твердеет за счет гидратации, то есть, воздействие воды, в то время как негидравлический цемент твердеет за счет карбонизации, т. е. воздействие диоксида углерода в воздухе. Поэтому гидравлические цементы могут быть использованы под водой, а не гидравлический, не может.
  • Гидравлический цемент изготавливается из известняка, гипса и глины, которую обжигают при высокой температуре. Негидравлические цементы — делают из извести, гипса, и хлорокиси.
  • Гидравлический цемент высыхает и твердеет в течение нескольких минут, а затвердение не гидравлического цемента, может занять месяц или больше, чтобы достичь пригодных условий.

Виды и использование гидравлического цемента

Различные виды гидравлических цементов были созданы для конкретных целей. Они заключаются в следующем:

  • Гидравлический цемент общего-использования: цемент общего назначения используется для ремонта полов, тротуаров, зданий, мостов, трубопроводов и др. где он хорошо работает как стопор утечки.
  • Белый гидравлический цемент: единственная разница между этим цементом и цементом общего использования — это цвет. Он производится с использованием минимального количества железа и магния, что придает ему белый цвет. Он в основном используется в архитектуре, где белый цвет будет хорошо смотреться в декоративных целях.
  • Умеренно сульфатостойкий гидравлический цемент: когда вода или влажная почва соприкасается с бетоном, сульфаты могут химически реагировать в результате масштабирования крекинга и расширения, которое разрушает структуру. Этот цемент используется в таких конструкциях, в связи с его частичной устойчивостью к сульфатам, которые он получает за счет хлоридов, которые смешиваются с сырьем. По этой причине, он в основном используется в конструкциях, которые подвергаются воздействию морской воды.
  • Высоко сульфатостойкий гидравлический цемент: этот цемент используется в бетонных конструкциях, которые сталкиваются с большим количеством сульфатов на регулярной основе. Он использует низкое водоцементное соотношение, и, следовательно, теряет прочность намного медленнее, чем гидравлический цемент общего-использования. Она также обладает высокой устойчивостью к коррозионным веществам, таким как кислоты.
  • Умеренно теплостойкий гидратационный гидравлический цемент: в то время как гидравлический цемент общего-использования выделяет много тепла при реакции с водой, этот вариант специально разработан, чтобы выдавать меньше тепла. Такой цемент широко используется в конструкциях с огромной массой, таких как причалы, фундаменты зданий, и большие подпорные стенки. Этот цемент снизит температуру, что делает структуру более прочной.
  • Низко теплостойкий гидратационный гидравлический цемент: этот цемент набирает прочность гораздо медленнее, чем другие типы, потому что он выделяет очень мало тепла после смешивания с водой. Он используется только в крупнейших структурах, таких как дамбы, где необходима минимизация нагрева. Этот тип доступен только в больших количествах по требованию.
  • Высоко быстро прочный гидравлический цемент: этот цемент набирает полную прочность очень быстро (примерно за неделю). Весьма похож на цемент общего назначения, где основная разница заключается в том, быстротвердеющий цемент имеет очень мелкий помол. Он используется в местах, где структура должна быть использована немедленно.

Как применять гидравлический цемент

  • Гидравлический цемент наносится на поверхности, которые были тщательно очищены. Не должно быть никаких следов жира, масла, грязи или других загрязнений.
  • Настоятельно рекомендуется использовать гидравлический раствор на цементной основе под керамическую облицовку в тех местах, где цемент будет использоваться.
  • Гидравлический цемент должен быть смешан в машине с лопастями, вращения, чтобы получить равномерную смесь.
  • Смешивайте только небольшое количество за один раз, и следуйте инструкциям производителя, чтобы получить лучшие результаты.
  • Необходимо быстро использовать цемент, так как он остается в работоспособном состояние всего за 10 — 15 минут.

Испытания плотности гидравлического цемента

Плотность гидравлического цемента может быть определена как отношение веса данного объема цемента и весом равным объемом воды. Эта плотность отвечает за его качество и его долговечность. Для проверки плотности, вам потребуется фляга, вода, лоток, и баланс.

Процедура:

  1. Проверьте, чтобы термос полностью высох, а затем заполнить его керосином на уровень между 0 и 1 мл.
  2. Теперь, снова тщательно высушите колбу.
  3. Поместите колбу в водяную баню при комнатной температуре в течение 10 до 15 минут.
  4. Очень осторожно налейте гидравлический цемент в колбу. Смотрите, чтобы не было брызг. Кроме того, будьте осторожны, чтобы цемент не прилипал к фляжке выше уровня керосина.
  5. Аккуратно поверните колбу в наклонном положении, пока пузырьки воздуха не выделятся.
  6. Поместите колбу в очередной раз в ванну с водой, подождите некоторое время, и обратите внимание на новый уровень.
  7. Разница между 2 показаниями показывает объем керосина, вытесненный цементом. Формула расчета плотности — масса цемента в граммах ÷ объем смещения в см3. Показания должны быть приняты до второго места после запятой.
  8. Повторите тест еще раз с нуля, и в среднем от 2 показания плотности. Разница не должна быть более 0,03. Если Вы не получите этот результат, цемент не может считаться нормальной консистенции.
Читайте так же:
Расход цемента при подборе составов

Испытания на прочность при сжатии

Проверку гидравлического цемента на прочность при сжатии важно увидеть, так как цемент увеличивает прочность в течение определенного периода времени после того, как он устанавливает. Оборудование, которое вам потребуется для этого теста это куб (70.6 мм3), вибрационная машина, баланс, мастерка, штанга, эмалированный лоток, и мерный цилиндр 200 мл.

Процедура:

  1. Смешайте 200 г гидравлического цемента с 600 г стандартного песка.
  2. Добавьте воду в смесь, чтобы создать пасту и перемешивайте в течение 3 — 4 минут. Смотрите, чтобы вы получили правильный цвет мокрого бетона, если вы этого не сделаете, вылейте смесь и начните все сначала.
  3. Устраните плесень на вибрирующей машине с хомутами.
  4. Залейте форму цементной смесью, а вибрируйте ее со скоростью около 12000 за 2 минуты.
  5. Дайте смеси отстояться в течение 24 часов в месте, с влажностью 90% и температурой около 26 градусов по Цельсию.
  6. После того, как цементный куб полностью отстоится, выньте его из формы и положите в чистую воду.
  7. Аналогичным образом создайте еще 5 кубов цемента.
  8. Поместите один кубик для испытания в машину для сжатия, и примените нагрузку 35/Н/мм2/мин.
  9. Рассчитайте мощность по формуле — Максимальная нагрузка, приложенная на Кубе в Ньютонах ÷ площадь сечения Куба в мм.
  10. Важно, чтобы вы сразу протестировали кубики после забора их из воды, не позволяя им высохнуть в течение испытания.

Кроме того, важно, носить полный комплект защитной одежды, наряду с перчатками и маской при использовании гидравлического цемента, чтобы предотвратить любую опасность для здоровья. Надо сказать, что использование этого продукта довольно простое, а на поверку оказывается благом для профессиональных строителей и владельцев домов по всему миру.

Твердение цемента с точки зрения науки

На рисунке 7.1-1 представлено строение частицы цемента в разрезе. При дей­ствии воды на порошок цемента составные части его вступают в реакцию с водой. В ходе этого процесса выделяется известь и образуются нерастворимые в воде новые соединения, так называемые гидросиликаты и гидроалюминаты кальция.

Химически связав часть воды, новые соединения, обладая меньшей раство­римостью, выпадают из раствора в виде мельчайших кристаллов, невидимых даже под обычным микроскопом. Эти кристаллы срастаются, переплетаясь между собой и образуя плотное камневидное тело.

Наиболее полную теорию твердения цементов создал русский ученый, академик А. А. Байков. Эта теория расширена и углублена в многочисленных работах советских ученых.

На рисунке 7.1.4-1 показан кусочек затвердевшего цементного камня, уве­личенный в 25 000 раз современным электронным микроскопом. Вещества, образующиеся при взаимодействии цемента с водой, по своему кристалличе­скому строению близки к минералам, составляющим обычные горные породы, поэтому они хорошо сцепляются с их поверхностью.

Чтобы улучшить свойства цемента, к нему при помоле добавляют не­большое количество гипса. Даже при 3-5 % в составе смеси его роль весьма существенна. Небольшая добавка гипса сильно влияет на сроки загустевания цементного теста, удлиняя его схватывание до нескольких часов, что позволя­
ет перевозить и укладывать бетонную смесь в конструкции. Кроме того, гипс увеличивает прочность и стойкость це­мента. Происходит это потому, что он химически соединяется с наиболее сла­бой составной частью цемента — трех- кальциевым алюминатом, превращая его в более стойкое вещество.

Цементы без гипса или с малым его количеством часто загустевают уже в процессе перемешивания, и это создает неудобства при работе с цементом.

Сроки схватывания зависят от тем­пературы материалов для бетона и са­мой бетонной смеси после затворения. Чем выше температура, тем быстрее на­чинается загустевание. При температу­ре выше +60°C обычно происходит быстрое схватывание большинства цементов. При температуре ниже 0°С схватывание и твердение цементов прекращается.

Прочность бетона в наибольшей степени зависит от прочности цементного камня. В свою очередь, прочность цементного камня в большой степени зави­сит от состава цемента, качества его обжига, тонкости измельчения и количе­ства воды, взятой для затворения. Чем больше воды взято на замес, тем меньше прочность цементного камня и, следовательно, бетона.

Изучение процессов твердения цементов показало, что при этом химиче­ски соединяется с цементом только 15-20 % воды по отношению к весу цемен­та. Но в состав бетонной смеси приходится вводить большее количество воды для придания ей подвижного удобоукладываемого состояния за счет образо­вания подвижного цементного теста, которое смазывает поверхность песка и каменных материалов. Обычно в бетонной смеси отношение количества воды к весу цемента находится в пределах 45-65%. Излишек воды по сравнению с ко­личеством, необходимым для химических реакций, раздвигает частицы песка и каменных материалов в составе бетона и увеличивает в нем объем пустот. Це­ментный клей становится разбавленным и прочность его понижается. Умень­шается и плотность бетона, а от плотности зависит его долговечность.

Для дорожного бетона допускается водоцементное отношение не более 0,50-0,55 в зависимости от климатических условий, в которых он будет работать.

Твердение цемента с точки зрения науки

Рис. 7.1.4-1. Затвердевший цемент под элек­тронным микроскопом

Для того чтобы уменьшить количество воды в составе бетонной смеси, практикуется добавка небольшого количества так называемых поверхностно — активных веществ. Научные основы их действия разработаны в нашей стране

Твердение цемента с точки зрения науки

Рис. 7.1.4-2 Микроснимки цемента: слева — с добавкой пластификатора; справа — цемент без пластифицирующей добавки

Академиком П. А. Ребиндером. Эти вещества, распределяясь по поверхности ча­стиц цемента, покрывают их тончайшей пленкой, создают смазывающий слой; при этом увеличивается пластичность бетонной смеси. Такие вещества назы­вают пластификаторами. Пластификаторы добавляются в очень небольшом количестве — десятые доли процента от веса цемента, но, несмотря на это, дей­ствие их очень сильное. На рисунке 7.1.4-2 приведены снимки под микроско­пом цемента, замешанного с водой без добавки пластификаторов и с добавкой. В обычном цементном тесте отдельные частицы слиплись в крупные хлопья, с добавкой же пластификатора все эти частицы разделились, увеличив таким образом пластичность теста.

Читайте так же:
Профессии для производства цемента

В качестве пластификаторов применяется отход бумажного производ­ства — сульфитно-спиртовая барда, сейчас ее называют лигносульфонат техни­ческий (ЛСТ). Добавка пластификатора не только повышает пластичность бе­тонной смеси, но и улучшает технические свойства бетона, например, его моро­зостойкость. Если при добавке пластификатора не увеличивать пластичность бетонной смеси, а сократить водоцементпое отношение, то можно увеличить прочность бетона или уменьшить расход цемента. Цементная промышленность выпускает пластифицированные цементы в массовом количестве.

Для бетонных дорожных покрытий важное значение имеет добавление в состав смеси веществ, повышающих долговечность бетона. В условиях кли­мата средних и северных широт России основным фактором, вызывающим раз­рушение дорожного покрытия, является многократное замораживание бетона в то время, когда он насыщен водой. Улучшение морозостойкости делает бетон более долговечным. Необходимое повышение морозостойкости достигается введением в бетон микродоз специальных веществ, обладающих способностью образовывать небольшие количества пены в составе бетонной смеси. Как ни удивительно, но оказывается, что бетон, содержащий в своем объеме неболь­шое количество пустот (4-5 %) в виде мелких, равномерно распределенных пузырьков воздуха, обладает в 2-3 раза большей морозостойкостью, чем обыч­ный. Количество вспенивающих веществ, называемых воздухововлекающими добавками, составляет всего несколько сотых процента от веса цемента. В ка­честве таких добавок обычно применяется канифольное мыло (промышленное название — абиетиновая смола).

Воздухововлекающие добавки должны найти широкое применение в до­рожном строительстве, так как позволят значительно повысить долговечность бетонных дорожных покрытий.

Среди специальных цементов, обладающих важными свойствами, следует отметить разработанный советскими учеными (М. И. Хигеровичем и Б. Г. Скрам — таевым) гидрофобный цемент. Само название говорит о том, что этот цемент от­талкивает воду.

Гидрофобность цементу придает добавление при помоле небольшого ко­личества вещества, которое не смачивается водой. Такое вещество образует тонкую молекулярную пленку на поверхности частиц цемента. Гидрофобный цемент, находясь даже во влажном воздухе, не теряет своей активности. Он гораздо устойчивее к длительному хранению, чем обычный портландцемент. Когда же в составе бетонной смеси гидрофобный цемент попадает в бетономе­шалку, то под действием трения о частицы песка и щебня жировая пленка на его поверхности прорывается, и он смачивается водой. Гидрофобный цемент придает бетону повышенную морозостойкость по сравнению с обычным порт­ландцементом. Так же, как и пластифицированный цемент, гидрофобный це­мент является улучшенной разновидностью портландцемента.

На основе портландцементного клинкера выпускается целый ряд цементов с добавками. В зависимости от вида добавки изменяется и название цемента. Если портландцемент смешивается с доменными шлаками, то его называют шлакопортландцементом. Если в качестве добавки используются природные материалы, обладающие способностью химически соединяться с известью (так называемые пуццоланы), то такие цементы называются пуццолановыми порт — ландцементами. И шлакопортландцемент, и пуццолановый портландцемент обладают более медленным твердением по сравнению с портландцементом и менее морозостойки, поэтому их применение для дорожных покрытий не допу­скается. Они могут быть использованы для подводных и подземных сооруже­ний и конструкций, повергающихся обычным атмосферным воздействиям.

Из специальных цементов представляет интерес глиноземистый цемент. Он отличается большой скоростью твердения. Такой цемент полностью затвер­девает в течение трех суток, приобретая за это время полную прочность. Одна­ко быстрое твердение сопровождается большим выделением тепла, способным привести к растрескиванию конструкций в результате неравномерного нагрева. Кроме этого, высокая температура (выше +25 °С) нарушает процесс твердения глиноземистого цемента; образующиеся при этом неустойчивые соединения снижают прочность и долговечность бетона.

Глиноземистый цемент применяют в тех случаях, когда нужно быстро вос­становить или забетонировать какую-нибудь конструкцию. Он применим толь­ко для тонкостенных сооружений. Применение такого цемента ограничено из — за большой стоимости (вдвое дороже портландцемента) и дефицитности сырья для его приготовления.

Одним из серьезных недостатков портландцемента является усадка — умень­шение размеров изготовленных на нем бетонных конструкций при нахождении их на воздухе. В последнее время созданы цементы, не обладающие этим недо­статком и даже расширяющиеся в процессе твердения. В СССР такой цемент был разработан группой ученых под руководством В. В. Михайлова и Б. Г. Скрамтаева.

Расширяющийся цемент характеризуется увеличением объема в первые часы и сутки твердения. Если изготовить из него изделие длиной 1 метр, то че­рез трое суток оно удлинится на 15 миллиметров. Дорожное покрытие из та­кого цемента на третьи сутки дало бы 15-метровый прирост длины на каждый километр — он как бы растет при затвердевании. Такое замечательное свойство расширяющегося цемента позволяет использовать его с наибольшим успехом для заделки швов в различных сооружениях. В частности, он применяется для уплотнения швов между тюбингами в тоннелях московского метро. Расширя­ющийся цемент находит применение для ремонта конструкций, когда важно обеспечить плотное прилегание их частей. Недостаточная морозостойкость бе­тона на таком цементе не позволяет применять его для сооружений, к которым предъявляются требования высокой морозостойкости.

Есть и другие виды специальных цементов: магнезиальный, кислотостой­кий и др. Их описание читатель найдет в специальных руководствах.

Для строительства дорожных покрытий обычно применяется портланд­цемент. Однако необходимо, чтобы этот цемент обладал высокой прочностью, небольшой изнашиваемостью, высокой морозостойкостью и хорошей устойчи­востью к переменам температуры. Не все заводы выпускают портландцемен — ты, удовлетворяющие этим требованиям. Технические условия на цемент для дорожного строительства предусматривают ограничение содержания (до 9 %) в цементе неустойчивого минерала, о котором мы уже говорили выше, — трех — кальциевого алюмината. Марка дорожного цемента должна быть не ниже 500.

Для растворов каменной кладки могут успешно применяться цементы на местных материалах — извести, шлаках, гипсе. Производство таких цементов с использованием в качестве активной составляющей молотой извести-кипелки развивается в нашей стране на основе предложений И. В. Смирнова и разрабо­танной им совместно с Б. В. Осиным теории. Они значительно дешевле обычно­го портландцемента и обладают необходимыми строительными качествами.

Применение извести-кипелки внесло переворот в технику использования извести. Активная энергия, заключенная в обожженной извести и терявшаяся прежде во время гашения, теперь используется при твердении растворов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector