Rubber-way.ru

Рубер Вэй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Задачи на количество теплоты с решениями ->

Задачи на количество теплоты с решениями

Нажмите, чтобы узнать подробности

Формулы, используемые на уроках «Задачи на количество теплоты, удельную теплоемкость».

Название величины

Обозначение

Единица измерения

Формула

Масса

Температура

Удельная теплоемкость

Количество теплоты

1 г = 0,001 кг; 1 т = 1000 кг; 1 кДж = 1000 Дж; 1 МДж = 1000000 Дж

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100 °С?

При решении задачи нужно учесть, что оба тела — и котёл, и вода — будут нагреваться вместе. Между ними происходит теплообмен. Их температуры можно считать одинаковыми, т. е. температура котла и воды изменяется на 100 °С — 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми. Ведь их массы и удельные теплоёмкости различны.

Задача № 2. Смешали воду массой 0,8 кг, имеющую температуру 25 °С, и воду при температуре 100 °С массой 0,2 кг. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислите, какое количество теплоты отдала горячая вода при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Задача № 3. Стальная деталь массой 3 кг нагрелась от 25 до 45 °С. Какое количество теплоты было израсходовано?

Задача № 4. В сосуде содержится 3 л воды при температуре 20 °С. Сколько воды при температуре 45 °С надо добавить в сосуд, чтобы в нём установилась температура 30 °С? Необходимый свободный объём в сосуде имеется. Теплообменом с окружающей средой пренебречь

Задача № 5. На сколько градусов изменилась температура чугунной детали массой 12 кг, если при остывании она отдала 648000 Дж теплоты?

Задача № 6. По графику определите удельную теплоёмкость образца, если его масса 50 г.

Задача № 7. Для нагревания медного бруска массой 3 кг от 20 до 30 °С потребовалось 12000 Дж теплоты. Какова удельная теплоемкость меди?

Задача № 8. Нагретый камень массой 5 кг, охлаждаясь в воде на 1 °С, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня?

Задача № 9. Какое количество теплоты потребуется для нагревания на 1 °С воды объемом 0,5 л; олова массой 500 г; серебра объемом 2 см3; стали объемом 0,5 м3; латуни массой 0,2 т?

Задача № 10. Какое количество теплоты получили алюминиевая кастрюля массой 200 г и находящаяся в ней вода объемом 1,5 л при нагревании от 20 °С до кипения при температуре 100 °С?

Задача № 11. а) Воздух, заполняющий объем 0,5 л в цилиндре с легким поршнем, нагрели от 0 до 30 °С при постоянном атмосферном давлении. Какое количество теплоты получил воздух? б) В порожнем закрытом металлическом баке вместимостью 60 м3 под действием солнечного излучения воздух нагрелся от 0 до 20 °С. Как и на сколько изменилась внутренняя энергия воздуха в баке? (Удельная теплоемкость воздуха при постоянном объеме равна 720 Дж/кг-°С.)

Задача № 12. ОГЭ Металлический цилиндр массой m = 60 г нагрели в кипятке до температуры t = 100 °С и опустили в воду, масса которой mв = 300 г, а температура tв = 24 °С. Температура воды и цилиндра стала равной Θ = 27 °С. Найти удельную теплоёмкость металла, из которого изготовлен цилиндр. Удельная теплоёмкость воды св = 4200 Дж/(кг К).

Краткая теория для решения Задачи на количество теплоты.

Расчет количества теплоты необходимого для нагревания. Количество теплоты

Процесс передачи энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей . Теплообмен происходит между телами, имеющими разную температуру. При установлении контакта между телами с различными температурами происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже. Энергия, переданная телу в результате теплообмена, называется количеством теплоты .

Удельная теплоемкость вещества:

Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики количество теплоты равно изменению внутренней энергии тела: .

Средняя энергия беспорядочного поступательного движения молекул пропорциональна абсолютной температуре. Изменение внутренней энергии тела равно алгебраической сумме изменений энергии всех атомов или молекул, число которых пропорционально массе тела, поэтому изменение внутренней энергии и, следовательно, количество теплоты пропорционально массе и изменению температуры:


Коэффициент пропорциональности в этом уравнении называется удельной теплоемкостью вещества . Удельная теплоемкость показывает, какое количество теплоты необходимо для нагревания 1 кг вещества на 1 К.

Работа в термодинамике:

В механике работа определяется как произведение модулей силы и перемещения и косинуса угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела относительно друг друга. В результате меняется объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но равна изменению не кинетической энергии тела, а его внутренней энергии.

При совершении работы (сжатии или расширении) изменяется внутренняя энергия газа. Причина этого состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия.

Вычислим работу газа при расширении. Газ действует на поршень с силой
, где— давление газа, а— площадь поверхностипоршня. При расширении газа поршень смещается в направлении силына малое расстояние
. Если расстояние мало, то давление газа можно считать постоянным. Работа газа равна:

Где
— изменение объема газа.

В процессе расширения газа совершает положительную работу, так как направление силы и перемещения совпадают. В процессе расширения газ отдает энергию окружающим телам.

Читайте так же:
Что такое радиальный кирпич

Работа, совершаемая внешними телами над газом, отличается от работы газа только знаком
, так как сила, действующая на газ, противоположна силе, с которой газ действует на поршень, и равна ей по модулю (третий закон Ньютона); а перемещение остается тем же самым. Поэтому работа внешних сил равна:

.

Первый закон термодинамики:

Первый закон термодинамики является законом сохранения энергии, распространенным на тепловые явления. Закон сохранения энергии: энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, а изменяться может лишь внутренняя энергия.

Внутренняя энергия может изменяться двумя способами: теплопередачей и совершением работы. В общем случае внутренняя энергия изменяется как за счет теплопередачи, так и за счет совершения работы. Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если система изолирована, то над ней не совершается работа и она не обменивается теплотой с окружающими телами. Согласно первому закону термодинамики внутренняя энергия изолированной системы остается неизменной .

Учитывая, что
, первый закон термодинамики можно записать так:

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами .

Второй закон термодинамики: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты .

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​(Q ) ​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​((t_2,^circ C) ) ​ и начальной ((t_1,^circ C) ) температур: ​(Qsim(t_2-t_1) ) ​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества .

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​(c ) ​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты ​(Q ) ​, необходимое для нагревания тела массой ​(m ) ​ от температуры ((t_1,^circ C) ) до температуры ((t_2,^circ C) ) , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи . В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

Читайте так же:
Чем отчистить сажу с кирпича

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи .

Дано:
​(m_1 ) ​ = 200 г
​(m_2 ) ​ = 100 г
​(t_1 ) ​ = 80 °С
​(t_2 ) ​ = 20 °С
​(t ) ​ = 60 °С
______________

​(Q_1 ) ​ — ? ​(Q_2 ) ​ — ?
​(c_1 ) ​ = 4200 Дж/кг · °С

2. СИ: ​(m_1 ) ​ = 0,2 кг; ​(m_2 ) ​ = 0,1 кг.

3. Анализ задачи . В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​(Q_1 ) ​ и охлаждается от температуры ​(t_1 ) ​ до температуры ​(t ) ​. Холодная вода получает количество теплоты ​(Q_2 ) ​ и нагревается от температуры ​(t_2 ) ​ до температуры ​(t ) ​.

4. Решение задачи в общем виде . Количество теплоты, отданное горячей водой, вычисляется по формуле: ​(Q_1=c_1m_1(t_1-t) ) ​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: (Q_2=c_2m_2(t-t_2) ) .

5. Вычисления .
​(Q_1 ) ​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
(Q_2 ) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​(m ) ​ количества теплоты ​(Q ) ​ температура тела повысилась на ​(Delta t^circ ) ​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​(c_1 ) ​ и ​(c_2 ) ​) веществ, из которых сделаны эти тела.

1) ​(c_1=c_2 ) ​
2) ​(c_1>c_2 ) ​
3) (c_1 t 1 и, следовательно, Q > . При охлаждении тела t 2и О сайте Контакты Рекламодателям Карта сайта

Расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении»

На прошлых двух уроках мы узнали, что такое количество теплоты и удельная теплоёмкость. Сегодня мы сможем узнать, как рассчитывается количество теплоты. Рассмотрим некоторые примеры. Допустим, нам нужно нагреть чугунную сковородку массой 5 кг от 20 о С до 200 о С. Исходя из таблицы, удельная теплоёмкость чугуна составляет 540 Дж/кг ∙ о С .

Как мы помним, это означает, что для нагревания 1 кг чугуна на 1 о С потребуется 540 Дж. Для нагревания 5 кг на 1 о С потребуется в 5 раз больше. Но нам нужно нагреть сковородку не на 1 о С, а на 180 о С. Следовательно, потребуется в 180 раз больше энергии. Из этого мы делаем вывод: чтобы рассчитать количество теплоты, необходимое для нагревания тела или выделяемого им при охлаждении, нужно удельную теплоёмкость тела умножить на массу и на разность между начальной и конечной температурами.

Получается, что количество теплоты находится в линейной зависимости от всех трех величин, необходимых для расчёта. Если мы сделаем проверку размерности, то убедимся, что наш вывод был правильным:

Это вполне логично, поскольку, если бы это было не так, то единицы измерения теплоёмкости были бы иными.

Рассмотрим несколько примеров решения задач на данную тему.

Задача 1. Оголённый медный провод нагрелся до 230 ℃, после чего его выключили из цепи. Какое количество теплоты он отдаст помещению с температурой 20 ℃, если масса провода 2,5 кг?

Задача 2. В алюминиевую кастрюлю массой 2 кг налили 1,5 л воды для нагревания до 80 ℃. Начальная температура воды и кастрюли составляет 25 ℃. Вычислите необходимое количество теплоты для нагревания. Плотность воды равна 1000 кг/м 3 .

Как мы помним, не все тела нагреваются одинаково, кроме того, кастрюля и вода в данном случае имеют разную массу. Поскольку между кастрюлей и водой происходит непрерывный теплообмен, их температуры можно считать одинаковыми. Итак, для вычисления необходимого количества теплоты, нам нужно рассчитать количество теплоты отдельно для кастрюли и для воды, а потом сложить эти величины.

Читайте так же:
Что будет если стиральную машину положить кирпич

Задача 3. Для охлаждения только что изготовленной стальной детали массой 12 кг, её положили в воду. Известно, что использовали 20 л воды с начальной температурой 15 ℃. Начальная температура детали 300 ℃. Через некоторое время деталь вынули и измерили её температуру. Она оказалась 34 ℃, как и температура воды. Найдите количество теплоты, которое получила вода и количество теплоты, которое потеряла деталь.

Этот результат не случайный. Ведь теплопередача — передача энергии, поэтому, вода получила ровно столько энергии, сколько отдала деталь.

Эта задача является хорошим примером использования большой теплоёмкости воды: ведь масса воды не превышала массу детали даже вдвое, в то время, как температура детали превышала температуру воды в 20 раз.

Расчет количества теплоты — Разноуровневые задания

1. Какое количество теплоты требуется для нагревания медной детали массой 200 г от температуры 15 °С до температуры 1015 °С?

2. Рассчитайте количество теплоты, необходимое для нагревания стального резца массой 400 г, если при закалке его нагрели от температуры 20 °С до температуры 1320 °С.

3. В алюминиевом чайнике массой 300 г нагревается 1,5 кг воды от температуры 20 °С до температуры 100 °С. Какое количество теплоты затрачено на нагревание воды? Чайника?

4. Определите, какое количество теплоты выделяет чугунный утюг массой 3 кг при охлаждении от температуры 70 °С до температуры 20 °С.

5. Какое количество теплоты выделяется при охлаждении кирпича массой 4 кг от температуры 30 °С до температуры 15 °С?

6. Определите, какое количество теплоты выделится при охлаждении 1,5 кг льда от 0 °С до температуры -5 °С.

7. Для нагревания бетонной плиты массой 250 кг от температуры 20 °С до температуры 40 °С потребовалось 4,4 ∙ 10 6 Дж теплоты. Какова удельная теплоемкость бетона?

8. При обработке алюминиевой детали на станке ее температура повысилась от температуры 20 °С до температуры 420 °С. Какое количество теплоты для этого потребовалось, если масса детали 500 г?

9. На сколько градусов охладится 2 кг горячей воды, отдав в окружающее пространство 504 кДж теплоты?

10. Какое количество теплоты теряет вода в пруду площадью 350 м 2 и глубиной 1,5 м при охлаждении на 5 °С?

11. Какова масса свинцовой детали, если для ее нагревания на 20 °С было затрачено 2800 Дж теплоты?

12. Чему равна удельная теплоемкость серебра, если для нагревания 20 г серебра на 85 °С потребовалось 425 Дж?

13. Определите массу стального молотка, если при его охлаждении от температуры 52 °С до температуры 20 °С, выделилось 300 кДж теплоты.

14. Для нагревания алюминиевой детали массой 100 г на 40 °С требуется 3680 Дж теплоты. Определите удельную теплоемкость алюминия.

15. Какое количество теплоты потребуется для нагрева 50 г льда на 5 °С?

16. Определите, какое количество теплоты выделяется при полном сгорании 6 кг торфа.

17. Рассчитайте, какое количество бензина необходимо сжечь для того, чтобы выделилось 230 кДж теплоты?

18. Какое количество теплоты выделится при полном сгорании 2,5 т каменного угля?

19. Чему равно количество теплоты, которое выделится при полном сгорании 100 г спирта?

20. Определите удельную теплоту сгорания керосина, если полном сгорании 50 г керосина выделяется 2,3 ∙ 10 6 Дж теплоты.

21. Определите, во сколько раз выделится большее количество теплоты при сгорании 5 кг бензина, чем при сгорании 5 кг торфа?

22. Какое количество воды можно нагреть на 50 °С теплотой, полученной при полном сгорании 10 г спирта?

23. Рассчитайте, массу дров, которые при полном сгорании выделяют такое же количество теплоты, как и 2 кг керосина.

24. При полном сгорании 5 кг топлива выделилось 6 ∙ 10 8 Дж теплоты. Определите удельную теплоту сгорания топлива? Что это за топливо?

25. Определите удельную теплоту сгорания авиационного керосина, если при полном сгорании 50 г этого топлива выделяется 3400 кДж теплоты?

Задания уровня “В”

1. Температура свинцовой детали массой 400 г равна 235 °С. Какое количество теплоты она передает окружающим телам, охлаждаясь до температуры 25 °С?

2. На сколько градусов остынет в питьевом баке емкостью 10 л кипяток, если он отдаст в окружающее пространство 2 МДж теплоты?

3. Рассчитайте массу железной детали, если для ее нагревание от температуры 20 °С до температуры 200 °С потребовалось 20,7 кДж теплоты?

4. Нагреется ли 2,5 л воды от температуры 20 °С до 100 °С, если ее внутренняя энергия увеличилась на 500 кДж?

5. При обработке холодом стальную деталь массой 540 г при температуре 20 °С поместили в холодильник, температура которого равна 80 °С. Какое количество теплоты выделилось при охлаждении детали?

6. Какое количество теплоты потребуется для нагревания на 18 °С воздуха в комнате, размеры которой 4м*5м х 2,5 м? Сколько воды можно нагреть этой же теплотой на такое же число градусов?

7. Определите, какое количество теплоты необходимо для нагревания 50 г растительного масла от температуры 15 °С до 115 °С, налитого в чугунную сковородку массой 1,25 кг.

8. Какое количество теплоты потребуется для нагревания 1,6 л воды в алюминиевом чайнике массой 750 г от температуры 20 °С до 80 °С?

9. Рассчитайте первоначальную температуру куска меди массой 1,2 кг, если при его охлаждении до температуры 20 °С выделилось 115 кДж теплоты.

10. Определите количество теплоты, которое потребуется для нагревания 15 л воды в железном котле массой 4,5 кг от температуры 15 °С до температуры 100 °С.

11. На нагревание кирпича массой 4 кг на 63 °С затрачено такое же количество теплоты, как и на нагревание той же массы воды на 13,2 °С. Какова удельная теплоемкость кирпича?

Читайте так же:
Чем можно снять краску с кирпича

12. На сколько градусов нагреется медный брусок массой 2 кг, если он получит всю внутреннюю энергию, выделившуюся при остывании 200 г воды от температуры 100 °С до температуры 20 °С?

13. Алюминиевый бидон массой 10 кг вмещает 30 л молока. Какое количество теплоты потребуется для нагревания молока в бидоне от 0 °С до температуры 70 °С (пастеризация)?

14. Рассчитайте количество теплоты, которое потребуется для нагревания смеси, состоящей из 500 г воды и 100 г спирта от температуры 20 °С до температуры 60 °С.

15. Какое количество теплоты потребуется для нагревания 2,3 кг воды в медной кастрюле массой 1,6 кг от температуры 10 °С до температуры 100 °С?

16. Какое количество теплоты выделится при полном сгорании 300 г спирта? Сколько воды можно нагреть на 60 °С этим теплом?

17. Определите количество теплоты, которое выделится при полном сгорании топлива, полученного при смешивании бензина массой 2 кг и керосина массой 3 кг.

18. Каким количеством природного газа можно заменить 2 г водорода, чтобы получить такое же количество теплоты, что и при сжигании водорода?

19. Какое количество теплоты выделится при полном сгорании 1 т каменного угля. Каким количеством торфа можно заменить этот уголь?

20. Сколько бензина нужно сжечь, чтобы получить столько же энергии, сколько ее выделяется при полном сгорании 4 кг каменного угля?

21. На сколько градусов нагреется 5 кг воды при сжигании 25 г каменного угля, если считать, что вся энергия, выделенная при сгорании угля, пойдет на нагрев воды?

22. Какова масса дров, которая потребуется для нагрева 20 л воды от температуры 30 °С до температуры 100 °С? Потерями тепла пренебречь.

23. Определите, какое количество воды можно нагреть на 40 °С теплом, выделившимся при полном сгорании 10 г керосина, если не учитывать потерь тепла.

24. Какое количество каменного угля необходимо сжечь, чтобы получить такое же количество теплоты, как и при сгорании 3 л керосина?

25. Какое количество спирта потребуется, для того, чтобы нагреть 3 кг воды, взятой при температуре 20 °С до 100 °С. Считать, что вся энергия, полученная при сгорании спирта, пойдет на нагрев воды.

Задания уровня “С”

1. В алюминиевой кастрюле, масса которой 750 г, нагрели 3 л воды от температуры 15 °С до температуры 100 °С. Какое количество теплоты получила кастрюля и вода?

2. Какова начальная температура 800 г льда, если для повышения его температуры до 0 °С потребовалось увеличить его внутреннюю энергию на 33,6 кДж?

3. В сосуде смешали воду при температуре 10 °С и воду при температуре 90 °С. Через некоторое время в сосуде установилась температура 40 °С. Рассчитайте отношение массы холодной воды к массе горячей воды.

4. В железный душевой бак, масса которого 60 кг, налили холодной колодезной воды массой 100 л. В результате нагревания солнечным излучением температура воды повысилась от температуры 5 °С до температуры 35 °С. Какое количество теплоты получили бак и вода?

5. Какое количество теплоты требуется для нагревания 2 л молока в алюминиевой кастрюле массой 250 г от температуры 20 °С до температуры 100 °С?

6. Какое количество холодной воды, имеющей температуру 10 °С, требуется добавить для охлаждения 2,5 л воды, взятой при температуре 90 °С, до температуры 50 °С?

7. В воду массой 2 кг, взятую при температуре 10 °С, погрузили железо, нагретое до температуры 540 °С. Определите массу железа, если установившаяся температура стала равной 40 °С.

8. Смешали 25 л воды при 30 °С и 5 л воды при температуре 80 °С. Определите температуру образовавшейся смеси.

9. В воду с температурой 20 °С влили ртуть, масса которой равна массе воды. Определите начальную температуру ртути, если установившаяся температура равна 21 °С.

10. На сколько градусов нагреется 300 г воды, если она получит всю энергию, выделившуюся при остывании 2,5 кг меди от температуры 140 °С до температуры 40 °С?

11. В стеклянный стакан массой 100 г, имеющий температуру 12 °С налили 150 г воды при температуре 100 °С. При какой температуре установится тепловое равновесие?

12. Стальное сверло массой 90 г, нагретое при закалке до температуры 840 °С, опущено в сосуд, содержащий машинное масло при температуре 20 °С. Какое количество масла следует взять, чтобы его конечная температура не превысила 70 °С?

13. В сосуд, содержащий 2,35 кг воды при температуре 20 °С, опускают кусок олова, нагретого до температуры 230 °С. Температура воды в сосуде при этом повысилась на 15 °С. Рассчитайте массу олова.

14. Для определения удельной теплоемкости железа в 200 г воды при температуре 18 °С опустили железную гирю массой 100 г при температуре 98 °С. Температура воды установилась равной 22 °С. Какова удельная теплоемкость железа по данным опыта?

15. Как изменится температура воды массой 900 г, если ей сообщить такое же количество теплоты, какое идет на нагревание алюминиевого цилиндра массой 3 кг на 100 °С?

16. На сколько градусов нагреются 80 л воды за счет количества теплоты, полученного от сжигания 1,5 кг сухих дров?

17. Рассчитайте количество керосина, которое потребуется сжечь для того, чтобы нагреть 8 кг воды от 10 до 100 °С, если считать, что вся энергия, выделенная при сгорании керосина, пойдет на нагрев воды.

18. В чайнике на газовой плите находилось 3 л воды при температуре 20 °С. Определите, сколько природного газа сгорает за 1 с, если в этом чайнике за 15 мин вскипятили воду. Потерями тепла пренебречь.

19. На сколько изменится температура воды массой 50 кг, если считать, что вся теплота, выделяемая при сжигании 500 г древесного угля, пойдет на нагревание воды?

Читайте так же:
Чем можно затонировать кирпич

20. Сколько нужно сжечь керосина, чтобы довести до кипения 4 л воды, если начальная температура воды 20 °С а потери энергии составили 25%?

21. Определите КПД спиртовки, если для нагревания 100 г воды от температуры 20 °С до температуры 90 °С сожгли 5 г спирта.

22. На сколько изменится температура воды, масса которой 22 кг, если ей передать 30% энергии, выделившейся при полном сгорании 2 кг сухих дров?

23. Какое количество древесного угля надо сжечь в самоваре, емкость которого равна 5 л, а КПД составляет 25%, чтобы нагреть в нем воду от температуру 20 °С до температуры 100 °С?

24. В резервуаре нагревателя находится 800 г керосина. Сколько литров воды можно нагреть этим количеством керосина от температуры 20 °С до температуры 100 °С, если КПД нагревателя равен 40%?

25. Чему равен КПД самовара, если для нагревания в нем 3 л воды от температуры 10 °С до температуры 100 °С требуется сжечь 75 г каменного угля?

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Решение задач на расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.
презентация к уроку по физике (8 класс)

Цель: Закрепление знаний по данной теме; формирование умений учащихся применять полученные знания при решении количественных и качественных задач.

Повторение Дайте определение количества теплоты. Какова единица количества теплоты? Дайте определение старинной единицы количества теплоты – калории. От каких величин зависит количество теплоты, полученное телом в процессе теплопередачи? Что показывает удельная теплоемкость вещества? Какова единица этой физической величины?

Повторение Удельная теплоёмкость растительного масла равна 700 Дж/(кг·°С). Что это означает? Для нагревания растительного масла массой 1кг на 1° C , необходимо количество теплоты, равное 700 Дж. При охлаждении растительного масла массой 1кг на 1° C , выделится количество теплоты, равное 700 Дж.

Повторение Удельная теплоёмкость свинца равна 140 Дж/(кг·°С). Что это означает? Для нагревания свинца массой 1кг на 1° C , необходимо количество теплоты, равное 140 Дж. При охлаждении свинца массой 1кг на 1° C , выделится количество теплоты, равное 140 Дж.

Чтобы вычислить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость вещества умножить на массу тела и на разность между конечной и начальной его температурами. Q = c · m · ( t 2 – t 1 ) = = c · m · t

t = ( t 2 – t 1 ) Q – количество теплоты, Дж С – удельная теплоемкость, Дж/(кг·°С) m – масса, кг t 2 — конечная температура,°С t 1 — начальная температура,°С t — разность температур,°С

Решение задач Задача № 1 Какое количество теплоты необходимо для нагревания от 20 до 1120 ° С стальной детали массой 30 кг? Удельная теплоемкость свинца 500 Дж/(кг·°С). (Удельная теплоемкость табличная величина)

Решение задач Дано: СИ: Решение: с = 500 Дж/(кг·°С) Q = c · m · (t2- t1) m = 30 кг Q = 500 Дж/(кг·°С) · 30 кг · (1120-20) ° С t 1 = 20°C = 16500000 Дж = 16500 кДж t 2 = 1120°C Q -? Ответ: Q = 16500 кДж

Решение задач Задача № 2 Какое количество теплоты выделилось при остывании воды, объём которой 20 л, если температура изменилась от 100 ° С до 50 ° С ? Удельная теплоемкость воды 4200 Дж/(кг·°С).

Решение задач Дано: СИ: t 1 = 1 0 0 °C t 2 = 50 °C V = 20 л 0,02 м³ с = 4200 Дж/(кг·°С)  = 1000 кг/м³ Q -? Ответ: Q = — 4200 кДж Решение: Q = c · m · (t 2 -t 1 ) m =  · V=> Q = c · · V·(t 2 -t 1 ) Q = 4200 Дж/кг ·°C · 1000 кг/м³ · 0,02 м³ ·(50 °C -100 °C ) = = — 4200000 Дж = — 4200 кДж Знак «-» указывает на то, что тело остывает и следовательно отдает энергию.

Решение задач Задача № 3 В алюминиевой кастрюле, масса которой 800 г, нагревается 5 л воды 10 от 100 °C до кипения. Какое количество теплоты пойдет на нагревание кастрюли и воды? Удельная теплоемкость воды 4200 Дж/(кг·°С). Удельная теплоемкость алюминия 920 Дж/(кг·°С).

Решение задач Дано: СИ: с 1 = 920 Дж/(кг·°С) m = 800 г 0,8 кг t 1 = 1 0°C t 2 = 1 00 °C V = 5 л 0,005 м³ с 2 = 4200 Дж/(кг·°С)  = 1000 кг/м³ Q -? Ответ: Q = 1956240 Дж Решение: Количество теплоты, необходимое для нагревания кастрюли и воды: Q=Q 1 +Q 2 , где Q 1 =c 1· m 1· (t 2 -t 1 ) – количество теплоты , необходимое для нагревания кастрюли ; Q 2 =c 2· m 2· (t 2 -t 1 ) – количество теплоты , необходимое для нагревания воды . m 2 =  ·V=> Q 2 = c 2· m 2· (t 2 -t 1 ) = c 2· · V·(t 2 -t 1 ) Q 1 = 920 Дж/кг ·°C · 0,8 кг·(100 °C — 10 °C )=66240 Дж Q 2 = 4200 Дж/кг ·°C · 1000 кг/м³ · 0,005 м³ ·(100 °C -10 °C ) =1890000 Дж Q = 66240 Дж + 1890000 Дж = 1956240 Дж

Самостоятельная работа Задача № 1 Какое количество теплоты требуется для нагревания олова массой 40 г на 15 °C ? Задача № 2 . Определите удельную теплоемкость металла, если на нагревание бруска массой 100 г, сделанного из этого металла, от 20 °C до 24 °C потребовалось 152 Дж теплоты.

Домашняя работа. 1. § 8 2. Повторить формулы 3. Подготовиться к проверочной работе по решению задач

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector